搜索

x
中国物理学会期刊

SMILE卫星的表面充电效应

CSTR: 32037.14.aps.69.20200044

Surface charging effect of the satellite SMILE

CSTR: 32037.14.aps.69.20200044
PDF
HTML
导出引用
  • 卫星在轨运行时, 航天器表面材料与周围的等离子体环境相互作用, 会积累电荷产生表面充电效应, 严重时将导致静电放电从而影响航天器的运行. SMILE卫星运行在太阳同步轨道和高倾角大椭圆轨道, 在轨运行将遭遇多种等离子体环境, 产生的表面充电效应将影响卫星在轨安全和科学数据的获取. 本文采用spacecraft plasma interaction system软件仿真, 建立了复杂精细的三维模型, 评估了卫星在磁尾瓣等离子体、太阳风等离子体及地球静止轨道极端恶劣等离子体不同环境中的表面充电风险. 仿真结果显示, 不同环境下的表面充电电位有差异, 但是不会影响科学载荷的数据获取. 通过对表面电流的分析发现, 二次电子发射在各种等离子体环境中都对表面充电有很大的影响. 通过分析阴影区材料表面充电电流, 计算得到的结果能够补充氧化铟锡材料二次电子发射系数实验曲线. 在光照下, 光电子发射在表面充电中占据统治地位.

     

    When the satellite is on orbit, the surrounding plasma environment will interact with the spacecraft surface, accumulate charges on the spacecraft surface and cause surface charging effect, which could lead to electrostatic discharge and affect the running of the spacecraft. SMILE is a satellite operating in a solar synchronous and high inclination large elliptical orbit. The on-orbit motion will encounter ionospheric plasma, magnetospheric plasma and solar wind plasma, pass through the region of the outer radiation belt enriched by high-energy electrons. These environmental factors can cause the surface charging effect on satellite and affect on-orbit security of the satellite and the acquisition of scientific data. Utilizing the software simulation of spacecraft plasma interaction system, the charging effects of SMILE satellite surface in solar wind plasma, magnetic tail plasma and extremely harsh plasma environment have been simulated, and the charging potential distribution on its surface have been obtained. The results show that the surface charging potential varies in different environments, but all comfort with the design requirements. The analysis of surface current shows that the secondary electron emission has great influence on surface charging in various plasma environments. Under sun illumination, photoelectron emission dominates surface charging. By analyzing the charge current on the surface on the eclipse, the calculated results can supply the experimental curve of the secondary electron emission coefficient of indium tin oxide materials.

     

    目录

    /

    返回文章
    返回