搜索

x
中国物理学会期刊

利用飞秒受激拉曼光谱技术研究Pyranine分子激发态质子传递过程

CSTR: 32037.14.aps.69.20200230

Excited state proton transfer processes of pyranine studied by femtosecond stimulated Raman spectroscopy

CSTR: 32037.14.aps.69.20200230
PDF
HTML
导出引用
  • 本文利用共振增强的飞秒受激拉曼光谱技术结合瞬态吸收光谱技术研究了光致产酸剂Pyranine发色团分子在水溶液中与醋酸根离子之间的光致激发态质子传递过程. 实验中观测到了Pyranine发色团在400—1700 cm–1频率范围内去质子化状态下的激发态拉曼振动光谱. 同时在920 cm–1 处也观测到了质子化醋酸根离子中激发态碳-碳单键伸缩拉曼振动信号. 通过对激发态质子传递中给体和受体的动力学的分析得到了在该条件下的激发态质子传递的速率.

     

    As one of the most fundamental processes, proton transfer reaction plays an important role in chemical and biological process, and to reveal the choreography of the proton motion intra- and intermolecularly, a spectroscopic technique capable of capturing molecular structural dynamics of excited-state proton transfer motions on an intrinsic time scale is needed. In this study, We utilize wavelength-tunable femtosecond stimulated Raman spectroscopy with a time resolution of ~100 fs, spectral resolution of 15 cm–1 and spectral range of 400 cm–1—1800 cm–1, combined with traditional transient absorption spectroscopywith a time window between 0 and 600 ps to simultaneously achieve reaction dynamics for transient reactant and product of the photoacid pyranine (8-hydroxypyrene1, 3, 6-trisulfonic acid, HPTS) molecules undergoing excited-state proton transfer reaction in complex with water and acetate molecules. Marker bands attributed to the deprotonated form of HPTS in a frequency range from 400 cm–1 to 1700 cm–1 are obtained under the excitation of 400 nm laser pulses. The marker band at 1516 cm–1, which is assigned to phenolic ring carbon carbon double band stretching accompanied with carbon hydrogen in-plane rocking motions, exhibits complex rise and decay dynamics. The simultaneously observed excited-state Raman mode at 920 cm–1 which is assigned to the excited carbon-carbon single bond stretch mode in the protonated acetic acid root molecule, helps us to clearly resolve the reaction rates of excited-state proton transfer. Based on the multi-exponential fitting results, the dynamics of excited-state Raman mode at 920 cm–1 exhibits bi-exponential processes with time constants of ~470 fs and ~3 ps. The ultrafast time component indicates that the excited-state proton transfer originates from an HPTS-acetate complex, indicating that part of the ground-state HPTS molecules are in the “tight” hydrogen bonding configuration that can quickly shift the excited-state proton charge toward the acetate acceptor molecule through a direct hydrogen bond. The second slower time component implies a significant subpopulation of HPTS in the ground state, i.e. hydrogen bonds to an acetate ion via an intervening water molecule, and upon photo excitation, the proton transfers to the water solvent before proton is picked up by the acetate ion.

     

    目录

    /

    返回文章
    返回