搜索

x
中国物理学会期刊

SeH+离子低激发态的电子结构和跃迁性质的理论研究

CSTR: 32037.14.aps.69.20200278

Theoretical study on electronic structure and transition properties of excited states for SeH+ anion

CSTR: 32037.14.aps.69.20200278
PDF
HTML
导出引用
  • 采用内收敛多组态相互作用及Davidson修正方法精确地计算了SeH+离子能量最低的3个离解极限对应的12个Λ—S态的势能曲线. 计算中考虑了芯-价电子关联、标量相对论修正和自旋-轨道耦合效应. 结果表明在30000—40000 cm–1处Ω态的曲线存在许多避免交叉, 导致a2, b0+, A12, A21, A30, A40+和c1态变为了双势阱. 通过求解径向薛定谔方程得到了12个Λ—S态和9个Ω态的光谱常数. 基于势能曲线和跃迁偶极矩, 预测出了 \rmA^3\Pi \leftrightarrow \rmX^3\Sigma ^ - \rmA_21 \leftrightarrow \rmX_10^ + 跃迁的弗兰克-康登因子、辐射速率和辐射寿命. 首次系统地报道了SeH+离子的光谱与跃迁性质.

     

    Potential energy curves of dipole moments for 12 electronic states correlating with the Se+(4Su) + H(2Sg), Se+(2Du) + H(2Sg) and Se+(2Pu) + H(2Sg) dissociation channels of SeH+ anion are calculated by the ic-MRCI + Q method. The AV5Z-DK basis set for Se atom and H atom are chosen. Scalar relativistic effect, core-valence correction, and spin-orbit coupling effect are also taken into account. In MRCI calculations, Se(1s2s) orbitals are frozen, H(1s) and Se(4s4p) orbitals are selected as active space, and the remaining orbitals are used for the core-valence correlation.
    Spectroscopic parameters of 12 Λ–S states and 9 low-lying Ω states are obtained. All Λ–S states we selected are bound states. The X3Σ, a1Δ, b1Σ+, A3Π and c1Π states each possess a large well, but the others each have a shallow well. The a1Δ, b1Σ+, A3Π, c1Π and 15Σ states cross in 30000–40000 cm–1 regions. The X3Σ, a1Δ and b1Σ+ come from the 4π2 electronic configuration around the equilibrium region, and three states have similar values of Re. The splitting dissociation channels are obtained at a spin-orbital coupling level. The calculated energy differences among five dissociation channels are in excellent agreement with the experimental data, and the maximal error is smaller than 0.5%. Due to the avoided crossing between the low-lying Ω states, the a2, b0+, A12, A21, A30, A40+ and c1 states all have two wells. The splitting parameters ASO of the X3Σ state and the A3Π state are predicted at the same time, i. e. ASO(X21 – X10+) = 252.4 cm–1, ASO(A21 – A12) = 858.9 cm–1, ASO(A30 – A21) = 1213.5 cm–1 and ASO(A40+ – A30) = 199.5 cm–1. The transition dipole moments of the A3Π \leftrightarrow X3Σ and A21 \leftrightarrow X10+ transitions are obtained. The oscillator strengths, Franck-Condon factors, and radiative lifetimes of these two transitions are also predicted. The radiative lifetime of A3Π state and A21 state are 746.6 and 787.8 ns, respectively. It implies the ability of electron transition for these two transitions.

     

    目录

    /

    返回文章
    返回