搜索

x
中国物理学会期刊

基于超快自旋-电荷转换的太赫兹辐射源

CSTR: 32037.14.aps.69.20200715

Terahertz emitters based on ultrafast spin-to-charge conversion

CSTR: 32037.14.aps.69.20200715
PDF
HTML
导出引用
  • 太赫兹技术在成像、传感和安全等方面展现出了巨大的应用潜力和价值. 传统的固态宽带太赫兹源主要依赖于非线性光学晶体和光电导天线, 而下一代太赫兹技术的一个主要挑战是开发高效、超宽带和低成本的太赫兹源. 最近几年, 基于自旋电子学的金属磁性异质结太赫兹源获得了很大关注. 本文首先将对该类太赫兹源涉及的物理机理进行讨论, 主要包括超快退磁和自旋-电荷转换. 然后对该类源的效率提升做了探讨, 具体的优化方向体现在三个方面: 薄膜材料选择(含生长过程控制)、薄膜厚度和薄膜结构设计. 文章最后给出简单总结和该领域的展望.

     

    Terahertz technology shows great potential applications in imaging, sensing and security. As is well known, the conventional solid-state broadband terahertz sources rely primarily on the nonlinear optical crystals and photoconductive antennas. Therefore, one major challenge for the next generation of terahertz technology is to develop the high-efficient, ultra-broadband and low-cost terahertz sources. In recent years, much attention has been paid to the spintronic terahertz emitters made of the metallic magnetic heterostructures on a nanometer scale. In this paper, the underlying physical mechanisms associated with this type of terahertz emitter is discussed. They mainly include the ultrafast demagnetization and the spin-charge interconversion processes. In order to further improve the terahertz emission efficiency, three main aspects are considered: appropriate choice of the materials (including conditions of the sample growing), film thickness, and new structure design. In the end, a short conclusion and future perspective for this research direction are given briefly.

     

    目录

    /

    返回文章
    返回