搜索

x
中国物理学会期刊

高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质

CSTR: 32037.14.aps.69.20200988

Evolutions of structural and optical properties of lead-free double perovskite Cs2TeCl6 under high pressure

CSTR: 32037.14.aps.69.20200988
PDF
HTML
导出引用
  • 无毒环保且稳定的非铅双钙钛矿材料因具有和铅基钙钛矿相似的三维结构, 被认为是铅基钙钛矿材料最有前景的替代品之一. 本文采用溶液法制备了一种新型非铅双钙钛矿材料Cs2TeCl6, 利用金刚石对顶砧高压装置和高压原位同步辐射X射线衍射、紫外-可见吸收光谱技术, 对其在高压下的晶体结构、光学带隙和电子结构演化进行了深入研究. 研究表明, 在实验压力范围(0—50.0 GPa)内Cs2TeCl6晶体结构并未发生改变, 始终保持Fm-3m的结构对称性, 表明该样品具有良好的稳定性; Cs2TeCl6的体积随压力的增加曲线变化比较平滑, 通过三阶Birch-Mumaghan状态方程得到了体弹模量B0 = (18.77 ± 2.88) GPa; Cs2TeCl6为间接带隙半导体, 在0—20.0 GPa范围内其光学带隙随着压力的增大逐渐减小, 这与高压下八面体TeCl62–的收缩相关. 完全卸压后, Cs2TeCl6恢复到加压前的初始状态. 研究结果为深入理解此类材料的晶体结构和光学性质提供科学依据, 并为调控其晶格结构、光学带隙及电子结构提供思路.

     

    In recent years, organic-inorganic hybrid perovskite materials have been widely used in solar cells, photodetectors, and light-emitting diodes due to their advantages such as high light absorption coefficient, good carrier mobility, and long carrier diffusion length. However, the high toxicity of lead and poor stability still restrict the application and promotion of such materials. The lead-free double perovskite material derived from the concept of “heterovalent substitution”, while maintaining the high symmetrical structure of perovskite, avoids using the toxic lead elements, which has the advantages of environmental friendly, stable structure, and suitable band gap. At present, the limited research on lead-free double perovskite materials still leaves a big room to researchers, and such a limited research seriously restricts the development and promotion of such materials. Therefore, the relationship between the structure and performance of lead-free double perovskite materials needs further exploring in order to provide theoretical basis for the practical application of such materials. Here in this work, the lead-free double perovskite material Cs2TeCl6 is prepared by the solution method. The crystal structure and optical properties of the lead-free double perovskite Cs2TeCl6 under high pressure are investigated by using diamond anvil cell combined with in-situ high-pressure angle-dispersive X-ray diffraction and ultraviolet-visible absorption technology. The results show that the crystal structure of Cs2TeCl6 is not changed within the experimental pressure range of 0-50.0 GPa, and the structural symmetry of Fm-3m is still maintained, indicating the sample has good stability. The lattice constant and volume of Cs2TeCl6 gradually decrease within the pressure range of 0-50.0 GPa. The volume and pressure of Cs2TeCl6 are fitted using the third-order Birch-Mumaghan equation of state, the bulk elastic modulus is obtained to be B0 = (18.77 ± 2.88) GPa. The smaller bulk elastic modulus indicates that the lead-free double perovskite material Cs2TeCl6 has higher compressibility. The optical band gap of Cs2TeCl6 is 2.68(3) eV at 1 atm and its optical band gap gradually decreases with the increase of pressure, which is related to the shrinkage of octahedral TeCl62– under high pressure. The calculation results show that the Cs2TeCl6 possesses an indirect band gap, the valence band maximum is mainly composed of Cl 3p orbits, and the conduction band minimum is mainly composed of Te 5p and Cl 3p orbits. After the pressure is completely relieved, Cs2TeCl6 returns to the initial state. The above conclusions further deepen the understanding of the crystal structure and optical properties of lead-free double perovskite Cs2TeCl6, and provide a theoretical basis for designing and optimizing the lead-free double perovskite materials.

     

    目录

    /

    返回文章
    返回