搜索

x
中国物理学会期刊

铁电纳米结构中奇异极化拓扑畴的研究新进展

CSTR: 32037.14.aps.69.20201063

Recent progress in exotic polar topological states in ferroelectric nanostructures

CSTR: 32037.14.aps.69.20201063
PDF
HTML
导出引用
  • 铁电体中极化拓扑畴(如涡旋畴)有望带来一系列新颖物理现象、新性能和新应用前景(如存储器件应用), 从而引起了广泛兴趣. 尤其是近年来在铁电纳米结构中发现了一系列有趣的新奇极化拓扑畴态, 例如涡旋、中心畴、斯格明子、麦韧(Meron, 也有称半子)等, 引发了新一轮探索热潮. 这些发现为进一步探索其中蕴含的丰富多彩的物理现象创造了条件, 也为调控和设计高性能材料和器件提供了新的基元和序构, 从而形成拓扑电子学的概念. 过去十年, 这一领域经历了快速发展, 成长为铁电物理领域的前沿热点. 本文将回顾近年来在铁电纳米结构中奇异极化拓扑畴的研究新进展, 并简要讨论了该领域所存在的问题和潜在发展方向.

     

    Exotic ferroelectric topological states (such as vortex state) have received intensive attention in the past decade, creating a new area for exploring the emerging physical phenomena and functionalities, as well as new applications (such as memory). In recent years, a series of discoveries in novel topological states, such as vortex, central domain, skyrmion and meron states, has inspired an upsurge of research interests. Moreover, the effort to manipulate such a topological domain structure hints the possibilities for the local, deterministic control of order parameters so that the static interface conductivity can be successfully controlled at topologically protected domain walls. These encouraging discoveries create a new avenue to the fertile emerging physic phenomena, and offer new possibilities for developing potential high-performance materials and new nano-electronic devices based on these exotic states. In the past decade, this field has developed rapidly and become a hot research topic in ferroelectrics. In this paper, we review the recent progress in the field of exotic topological state in nanoferroelectrics, and discuss some existing problems and potential directions.

     

    目录

    /

    返回文章
    返回