搜索

x
中国物理学会期刊

步行通道内行人流拉链现象的生成机理与仿真研究

CSTR: 32037.14.aps.70.20201626

Generation mechanism and simulation research of zipper phenomenon of pedestrian flow in corridor

CSTR: 32037.14.aps.70.20201626
PDF
HTML
导出引用
  • 以步行通道内的单向行人流为研究对象, 分析研究行人拉链现象的生成机理, 并建立基于Voronoi图的速度修正模型对其仿真研究. 首先, 从行人追求视野最佳和步行舒适的角度分析拉链现象的生成机理, 以行人的视野关注和视野遮挡描述影响行人移动过程中产生拉链偏移的因素; 以行人局部密度描述行人的步行舒适度; 引入拉链敏感系数描述行人客观偏移的意愿程度; 提出单个行人侧向偏移的机制, 获得行人最佳的偏移位置. 然后, 构建基于Voronoi图的行人速度修正仿真模型, 考虑行人是否有偏移倾向的主观意愿, 并嵌入偏移规则, 模拟再现行人的拉链现象. 仿真发现: 行人的拉链层数与通道宽度成正比, 该模型速度密度关系图与实证数据吻合较好; 与不考虑拉链效应相比, 倾向主动进行侧向偏移的行人占比越大, 越有助于提高通道内行人的移动速度、舒适度和空间利用率.

     

    In this study, the unidirectional pedestrian flow in the corridor is taken as a research object, the generation mechanism of the pedestrian zipper phenomenon is analyzed, and a velocity correction model based on the Voronoi diagram is established for the simulation research. First, the generation mechanism of the pedestrian zipper phenomenon is analyzed from the perspective of optimal visual field and walking comfort of pedestrians. Then the visual attention and visual occlusion of pedestrians are used to describe the factors which affect the zipper deviation during pedestrian movement, the local density of pedestrians is used to describe the walking comfort of pedestrians, the zipper sensitivity coefficient is adopted to describe the willingness of pedestrians to move objectively, and the mechanism of lateral deviation of a single pedestrian is considered to obtain the optimal deviation position of pedestrians. Besides, the Voronoi diagram is introduced to effectively determine the pedestrians surrounding the target pedestrian within the visual field. And the influence of surrounding pedestrians with different distances and directions on the moving velocity of the target pedestrian based on the Voronoi diagram is considered. Then, a velocity correction model of pedestrians based on the Voronoi diagram is constructed, whether the pedestrian has a subjective willingness to deviate is considered, and the deviation rule is embedded to simulate and reproduce the zipper phenomenon of pedestrians. The simulation results truly reproduce the normal pedestrian flow through the corridor and show that our model can overcome the deficiency of the jitter and overlap phenomenon of the traditional social force model. The self-organized pedestrian flow with uniform distribution and the pedestrian zipper effect can also be observed. Furthermore, through the simulation results, we can see that the number of zipper layers for pedestrians is proportional to the width of the corridor. The comparison of simulated pedestrian data with the empirical data indicates that the fundamental diagram of velocity-density relation of our model is in good agreement with the empirical data. A comparison between with and without considering the zipper effect shows that the larger the proportion of pedestrians actively willing to laterally deviate, the more helpful it will be to improve the moving velocity, comfort and space utilization of pedestrians in the corridor.

     

    目录

    /

    返回文章
    返回