搜索

x
中国物理学会期刊

多功能量子远程传态网络

CSTR: 32037.14.aps.70.20201749

A multifunctional quantum teleportation network

CSTR: 32037.14.aps.70.20201749
PDF
HTML
导出引用
  • 连续变量量子远程传态在构建连续变量量子计算以及量子信息网络中发挥着重要作用. 随着量子信息研究的深入发展, 人们对多组份的量子远程传态以及它的灵活多样性、可控性等方面提出了更高的要求. 本文提出了一种多功能量子远程传态网络的理论构建方案, 首先将两对Einstein-Podolsky-Rosen纠缠态光场相互耦合, 获得具有特殊量子关联的4个光场模式, 然后以此为量子资源构建功能性完全不同的两类量子远程传态网络, 一类是仅能传送一个未知量子态的可控性量子远程传态网络, 一类是可以同时传送两个未知量子态的量子远程传态网络. 本文分别从控制方的数量、可传送未知量子态的数量、保真度等多方面分析了不同功能量子远程传态网络的应用特点及优势. 该方案中仅利用同一种量子资源实现了量子远程传态网络的多类型构建, 且量子资源的制备方式简易, 易于向更多组份扩展, 这些优势都为以后建立更大规模更加复杂的量子信息网络提供了更多更广阔的应用前景, 加快了量子信息实用化的步伐.

     

    Quantum teleportation is one of the most basic quantum protocols, which transfers an unknown quantum state from one location to another through local operation and classical communication by using shared quantum entanglement without physical transfer of the information carrier. And it has been widely used in various quantum information protocols such as entanglement swapping, quantum repeaters, quantum gate teleportation, quantum computation based on measurement, and quantum teleportation networks, which have important application value in quantum computation and quantum information. Quantum teleportation is a naturally bipartite process, in which an unknown quantum state can only be transmitted from one node to another. With the further development of quantum information research, it is necessary to transfer quantum states or quantum information among more and more nodes. Multipartite quantum protocols are expected to form fundamental components for larger-scale quantum communication and computation. A bipartite quantum teleportation should be extended to a multipartite protocol known as a quantum teleportation network. In this paper, a multifunctional quantum teleportation network is proposed theoretically. We first propose a special method of constructing four-partite quantum resources in continuous variables (CVs), and based on this, construct two different types of CV quantum teleportation networks. One type of network contains just one quantum teleportation process consisting of a sender, a receiver and two controllers. In this type of network, the unknown quantum state can be recovered at any other node according to the requirement after the measurement in the input node, which enriches the transfer direction and transfer mode of the unknown quantum state. And meanwhile, the two controllers can control the transfer of a quantum state from the sender to the receiver by restricting the sender and receiver’s access to their information, which makes the quantum teleportation network controllable. The other type of network has two quantum teleportation processes, each containing only a sender, a receiver and no controllers, which increases the number of quantum states that can be transmitted. Then we analyze the dependence of the fidelity of each quantum teleportation network on different physical parameters, and compare the characteristics, advantages and disadvantages among different types of quantum teleportation networks. The scheme for constructing a multifunctional quantum teleportation network in this paper shows some advantages, such as the greater number of quantum nodes, diversity of types, simple operation procedure. And all these advantages provide a broader application prospect for establishing larger and more complex quantum information networks in the future and quicken the pace of the application of quantum information.

     

    目录

    /

    返回文章
    返回