搜索

x
中国物理学会期刊

溶剂热制备铬掺杂硫化锌和硫化纳米结构和磁性能

CSTR: 32037.14.aps.70.20201963

Preparation and magnetic properties of chromium doped zinc sulfide and cadmium sulfide nanostructures by solvothermal method

CSTR: 32037.14.aps.70.20201963
PDF
HTML
导出引用
  • 以乙醇胺和乙二胺为混合溶剂, 通过简单溶剂热法, 用S, ZnO和CdO为源, 成功制备了不同量Cr掺杂ZnS和CdS半导体纳米结构. X-射线衍射测试表明, 纳米结构ZnS和CdS具有纤锌矿结构. 扫描电子显微镜给出了不同铬含量的ZnS和CdS的形貌. 用电子能量散射谱观察到产物的成分为Cr, Zn, Cd和S. 振动样品磁强计测量表明, Cr掺杂的ZnS在室温下表现出铁磁性, 而未掺杂的ZnS在室温下表现出抗磁性. 掺杂的ZnS纳米片(Cr原子百分比为4.31%和7.25%)饱和磁化Ms分别为2.314 × 10–3和5.683 × 10–3 emu/g (1 emu/g = 10–3A·m2/g), 矫顽力Hc为54.721, 和88.441 Oe (1\;\rmOe = \dfrac10^34\rm\pi \rmA/\rmm). 未掺杂CdS的铁磁性很弱, 而Cr掺杂CdS的铁磁性较强. CdS纳米片(Cr原子百分比分别为0, 1.84%和2.12%)的饱和磁化Ms分别为0.854 × 10–3, 2.351 × 10–3和7.525 × 10–3 emu/g, 矫顽力Hc 为74.631, 114.372和64.349 Oe. 实验结果表明, 在室温下, Cr掺杂ZnS具有铁磁性, 这与第一性原理计算的Cr掺杂ZnS的铁磁性结果一致. Cr掺杂CdS的铁磁性起源与CdS晶格中Cr的掺杂有关.

     

    With the continuous development of nanotechnology, people have higher and higher requirements for the performances of nanomaterials. In the past few decades, researchers have used various methods to prepare nanomaterials with different dopants, and studied their optical and electrical properties. Nanomaterials with ferromagnetic properties have a wide range of applications, and there have been many reports about the ferromagnetic properties of doped magnetic elements. However, there have been few reports about Cr-doped ZnS and CdS. In order to obtain Cr-doped ZnS and CdS nanosheets with room temperature ferromagnetism, in this paper, using ethanolamine (EA) and ethylenediamine (EN) as mixed solvents, ZnS and CdS semiconductor nanostructures doped with different amounts of chromium are successfully prepared in S, ZnO and CdO sources by simple solvent thermal method. The X-ray diffraction (XRD) measurements show that the ZnS and CdS nanostructure have a wurtzite structure. Scanning electron microscopy (SEM) images show the morphologies of ZnS and CdS with different chromium content. When the content of Cr is 4.31 at% or 7.25 at%, the thickness of Cr-doped ZnS nanosheets is about 210–290 nm, and the morphology of undoped ZnS is composed of sub-morphologies of relatively thick nanosheets. The morphologies of CdS doped with different amounts of Cr are composed of sub-morphologies of snowflake like nanosheets with thickness of about 120–190 nm. Energy dispersive spectrometer (EDS) is used to observe the product composed of Cr, Zn, Cd, and S. The EDS measurement and calculation of the Cr content in Cr-doped ZnS nanosheets are 4.31 at% and 7.25 at% respectively, and those of the Cr content in Cr-doped CdS nanosheets are 1.84 at% and 2.12 at%. The vibration sample magnetometer(VSM) measurements show that ZnS doped with chromium exhibits ferromagnetism at room temperature, while the undoped ZnS exhibits diamagnetism at room temperature. The values of saturation magnetization Ms of Cr-doped ZnS nanosheets with Cr = 4.31 at% and 7.25 at% are 2.314 and 5.683 (10–3 emu/g), and the coercivity values of Hc are 54.721 and 88.441 Oe, respectively. The ferromagnetism of pure CdS is weak, while that of Cr-doped CdS is enhanced at room temperature. The saturation magnetization Ms values of Cr-doped CdS nanosheets with Cr = 0, 1.84 at% and 2.12 at% are 0.854, 2.351 and 7.525(10–3 emu/g), respectively, and the coercivity values of Hc are 74.631, 114.372 and 64.349 Oe, respectively. The values of saturation magnetization of ZnS and CdS increases with the Cr doping increasing. The ferromagnetism of Cr-doped ZnS at room temperature is confirmed by the experimental result, which is consistent with the ferromagnetism of Cr-doped ZnS calculated by the first principle. The origin of ferromagnetism of Cr-doped CdS is related to the doping of Cr in CdS lattice.

     

    目录

    /

    返回文章
    返回