搜索

x
中国物理学会期刊

基于亚波长光栅和三明治结构的偏振无关微环谐振器的设计与仿真

CSTR: 32037.14.aps.70.20201965

Design and simulation of polarization-insensitive ring resonator based on subwavelength grating and sandwiched structure

CSTR: 32037.14.aps.70.20201965
PDF
HTML
导出引用
  • 基于绝缘体上硅的微环谐振器由于成本低、结构紧凑和集成度高等优点, 是构成波分复用器、调制器以及光开关等的核心器件. 然而, 该类器件由于芯层与覆盖层间的高折射率差, 具有较大的偏振相关性, 在诸多使用偏振无关器件的应用中受到限制. 本文基于亚波长光栅和三明治结构设计了一种偏振无关微环谐振器, 通过改变三明治结构中低折射率层SiNx的折射率, 同时结合耦合区亚波长光栅的结构参数优化, 最终消除微环谐振器的偏振相关性. 运用三维有限时域差分法进行建模仿真, 对器件的结构参数进行了优化. 结果表明, 器件在TE和TM偏振模时的3-dB带宽均小于0.8 nm, 插入损耗均小于0.8 dB, 微环半径仅为10 µm, 并且在谐振波长1552.26 nm附近的两个自由频谱区内实现了偏振无关. 与常见的微环谐振器相比, 本文所提出的器件尺寸小、损耗低, 可用于构成偏振无关的密集波分复用器, 在未来的集成光路中具有较高的应用价值.

     

    Ring resonator fabricated on a silicon-on-insulator is versatile in optical integration, which can be used to realize filters, modulators and switches. However, silicon-on-insulator is difficult to control the polarization dependence, and thus its application is greatly limited. The polarization dependence of the ring resonator is caused mainly by two factors: the coupling coefficients of the coupling region at the same wavelength for the two orthogonal polarization modes are different, and the birefringence effect of curved waveguide results in the different resonant wavelengths of TE and TM polarization modes. When the coupling region polarization independence and the resonant wavelength polarization independence are simultaneously satisfied, the polarization independence of the ring resonator can be realized. In this paper, a new type of polarization-insensitive ring resonator on a silicon-on-insulator is designed based on subwavelength grating and sandwiched structure. Firstly, by adjusting the duty cycle of the subwavelength grating and the refractive index of SiNx in the coupling region, polarization independence of the coupling region is achieved. Secondly, the refractive index of SiNx in curved waveguides is designed to make the resonance wavelengths for orthogonal polarization modes equal. Thirdly, the parameters of the coupling region are optimized to reduce the insertion loss. The three-dimensional finite-difference time-domain method is used for simulation. The results show that the radius of the ring is only 10 μm, the 3-dB bandwidth of the device is less than 0.8 nm, and the insertion loss is lower than 0.8 dB. It has potential applications in the future dense wavelength division multiplexing systems.

     

    目录

    /

    返回文章
    返回