搜索

x
中国物理学会期刊

基于时域剪切干涉的纳秒脉冲相位测量技术

CSTR: 32037.14.aps.70.20202104

Phase retrieval of nanosecond laser pulses based on temporal shearing interferomentry

CSTR: 32037.14.aps.70.20202104
PDF
HTML
导出引用
  • 提出一种时域剪切干涉技术测量纳秒激光脉冲的时间相位分布, 该方法将待测脉冲分为彼此之间有数百个皮秒延迟量的两个脉冲; 并在对其中一个脉冲加入适量的频移后和另一个脉冲合束, 得到时域干涉条纹; 最后采用相适应的算法, 从记录的时域条纹计算得到纳秒激光脉冲的时间相位分布, 并进一步计算得到激光脉冲的精细光谱结构. 在对测量原理进行系统分析的基础上, 利用数值模拟和实验对该相位测量技术的可行性进行了验证, 并系统分析了其测量误差和非理想条件下的各种干扰因素的影响. 由于该测量技术不采用任何非线光学方法, 可对任何波长的激光脉冲进行测量, 具有光路简单、测量精度高和适用范围广等优点, 为需要对纳秒激光脉冲的时域相位分布进行测量的高功率激光等领域提供了一种简单便捷的测量新技术.

     

    Temporal shearing interferometry is proposed to measure the temporal phase distribution of nanosecond laser pulses. In the proposed scheme, the pulse to be measured is divided into two pulses with a delay of hundreds of picoseconds in between, arbitrary one of the two pulses is added to by an appropriate amount of frequency shift, then is combined with the remaining pulse, thereby obtaining the temporal shearing interferogram that is recorded by a normal photodiode. The temporal phase distribution is calculated by an adaptive algorithm based on Fourier transform, and further the precise spectra of the measured pulse can also be calculated according to the Fourier relation between time domain and spectral domain. Based on the systematic analysis of the principle of the technology, the proposed technology is verified by numerical simulation. And the influence of the variable parameters including noise, relative delay, relative intensity on the measured error are systematically analyzed in the simulation. And the results show that the proposed nanosecond temporal phase diagnostic technique has a good performance when the signal noise ratio of the interferogram is above 15 dB, the relative delay of the pulses is between 0.5% and 28% and the relative intensity is above 0.1%. The proposed method is verified experimentally in a nanosecond laser system with central wavelength of 640 nm and pulse width of 20 ns. And the calculated spectra obtained from the temporal shearing interferogram match well with the spectra measured by a scanning Fabry-Perot interferometer. This proposed technique does not use any nonlinear optical effects, thus it can be applied to the diagnostic of nanosecond laser pulse centered at any wavelength. Hence, it provides a simple experimental setup for implementing the higher-accuracy diagnostic of the temporal phase distribution of nanosecond laser pulses.

     

    目录

    /

    返回文章
    返回