搜索

x
中国物理学会期刊

二次单畴化制备GdBCO超导块材的方法及其性能

CSTR: 32037.14.aps.70.20202141

Fabrication process and superconducting properties of recycling multi-domain GdBCO bulk superconductors using improved infiltration technique

CSTR: 32037.14.aps.70.20202141
PDF
HTML
导出引用
  • 高质量单畴REBa2Cu3O7–δ (REBCO)超导块材具有广泛的应用前景, 但制备过程中极易产生大量多畴样品, 致使成功率明显下降、成本显著提高, 并制约其进一步批量化和实用化的进程. 受顶部籽晶熔渗生长(TSIG)方法的启发, 本文提出了一种对生长失败的GdBCO超导块材重新单畴化织构生长的新方法, 即将生长失败的样品进行预处理后作为固相源坯块, 然后采用改进后的TSIG法进行二次单畴化织构生长, 并成功地制备出了一系列二次单畴化的GdBCO超导样品, 同时, 对样品的超导性能及微观结构进行了研究. 结果表明, 所制备的二次单畴化GdBCO超导样品的磁悬浮力均大于30 N, 样品的捕获磁通密度均在0.3 T以上, 捕获磁通效率高达60%以上, 该结果为进一步发展低成本、高效率制备REBCO超导体的新方法提供了科学依据和新思路.

     

    High temperature superconductor has become one of the hotspots of research, because of its high critical temperature, strong trapped flux density, stable suspension characteristics and large magnet levitation force. The single domain REBa2Cu3O7–δ (REBCO) superconductors have the wide and potential applications in the high-tech fields, such as micro-magnet superconducting maglev train, superconducting motor and superconducting magnetic separation system. However, a large number of multi-domain samples are easy to produce in the preparation process, which leads the success rate to decrease significantly and the cost to increase considerably, which restricts its practical application process. Inspired by the top seeded infiltration growth method, we develop a reliable method of recycling failed GdBCO sample by re-supplementing the liquid phase lost in the primary growth process and pretreating the failed sample as solid phase source billets. We recycle a series of GdBCO samples by using this new technique successfully. The growth morphology, superconducting properties, and microstructures of the recycled GdBCO bulk superconductors are investigated in detail in this study. The results show that the magnetic levitation forces of the recycled GdBCO samples are all greater than 30 N, their magnetic flux densities are all above 0.3 T, and their capture efficiencies are above 60%. These results provide the scientific basis and new ideas for developing the low cost and high efficient yield of fabrication of the REBCO bulk superconductors.

     

    目录

    /

    返回文章
    返回