搜索

x
中国物理学会期刊

常压等离子体对柔性多孔材料表面处理均匀性的研究进展

CSTR: 32037.14.aps.70.20210077

Treatment uniformity of atmospheric pressure plasma on flexible and porous material surface: A critical review

CSTR: 32037.14.aps.70.20210077
PDF
HTML
导出引用
  • 柔性多孔材料在当今众多前沿科学与技术领域发挥着重要作用, 其表面改性将进一步赋予其多样和优异的表面性能, 拓展其在功能和智能可穿戴等领域的应用. 常压等离子体技术由于低温、低能耗、高效、环保、低成本、不改变材料本体特性、易于实现卷对卷制备等优势, 在应用环境、样品材料选择上展现出良好的适应性, 在低熔点柔性材料大面积低成本表面处理方面具有很好的应用前景和研究价值. 本文综述了近年来常压等离子体柔性多孔材料表面改性的几个实例及在新材料、新能源、环保、生物医学中的应用. 探讨了柔性多孔材料常压等离子体均匀处理所遇到的稳定性及渗透性的问题与挑战. 综述了本课题组在常压等离子体稳定放电、卷对卷常压等离子体多孔介质处理及内部渗透性和均匀性方面的研究工作, 介绍了本课题组在常压等离子体纳米颗粒膜沉积动力学及膜结构调控方面的突破和思路. 常压等离子体柔性多孔介质表面处理技术走向应用仍然存在诸多挑战, 需要结合常压等离子体的放电方式及特性、处理材料的结构及加工特性、等离子体和材料的相互作用等来进行综合考虑, 才能提供合理可行的解决方案.

     

    Flexible porous materials play an important role in frontier science and technology fields. Surface modification will further endow the materials with diverse and excellent surface properties, and expand the scope of their applications in functional and intelligent wearable devices. Atmospheric pressure plasma technology has many advantages in treating the flexible materials, such as low temperature, low energy consumption, high efficiency, friendly environment, low cost, no change in material itself characteristics, suitability for roll-to-roll preparation, etc. Also, it presents good adaptability in applied environment and target materials. All these advantages meet the requirements of large area and low-cost surface modification of flexible porous materials.
    In this paper, we review several researches of atmospheric pressure plasma surface modification of flexible porous materials used in advanced materials, new energy, environmental protection and biomedicine. The problems and challenges of stability and permeability encountered in uniformly treating the flexible and porous materials by atmospheric pressure plasma are presented. Then, we introduce our research work on atmospheric pressure plasma stable discharge, roll-to-roll coating treatment of permeability and uniformity. Finally, we introduce the breakthrough in and ideas on the deposition kinetics of nanoparticle thin films and their microstructure control by atmospheric pressure plasma.
    However, there are still many challenges to be overcome in the applications of the methods in current situation. Basic characteristics, discharge modes of atmospheric pressure plasma and the relationships of plasma discharge to structure and property of the various treated materials need to be further explored. It is confirmed that the permeability and uniformity of the atmospheric pressure plasma treatment in flexible porous materials are very important and their in-depth investigations will promote the application of this method—a high efficient, environmentally-friendly and continuous way of realizing functional and intelligent wearable devices in the future.

     

    目录

    /

    返回文章
    返回