搜索

x
中国物理学会期刊

纳米液滴撞击柱状固体表面动态行为的分子动力学模拟

CSTR: 32037.14.aps.70.20210094

Molecular dynamics simulation on dynamic behaviors of nanodroplets impinging on solid surfaces decorated with nanopillars

CSTR: 32037.14.aps.70.20210094
PDF
HTML
导出引用
  • 液滴撞击固体表面是一种广泛存在于工农业生产中的现象. 随着微纳技术的发展, 纳米液滴撞击行为的定量描述有待完善. 采用分子动力学模拟纳米水滴撞击柱状粗糙铜固体表面的动态行为. 分别在液滴速度为2—15 Å/ps, 五种方柱高度和六种固体表面特征能的情况下分析液滴的动态特征. 结果表明, 随着液滴初始速度V0的增加, 其最终稳定状态先由Cassie态(V0 = 2—3 Å/ps)转变为Wenzel态(V0 = 4—10 Å/ps), 然后再次呈现Cassie态(V0 = 11—13 Å/ps). 当V0 > 13 Å/ps时, 液滴发生弹跳. 液滴最大铺展时间tmaxV0关系曲线中存在拐点, 并针对不同速度区域提出tmaxV0的关系式. 随着方柱高度的增加, 液滴的稳定状态由Wenzel向Cassie态转变, 液滴稳定状态的铺展半径逐渐减小. 固体表面特征能εs的增大使得液滴的铺展能力增强, 液滴铺展后的回缩现象逐渐减弱直至消失.

     

    Droplets’ impinging on a solid surface is a common phenomenon in industry and agriculture. With the development of micro and nano technology, the quantitative descriptions of impinging behaviors for nanodroplets are expected to be further explored. Molecular dynamics (MD) simulation is adopted to investigate the behaviors of water nanodroplets impinging on cooper surfaces which have been decorated with square nanopillars. The dynamical characteristics of nanodroplets are analyzed at 5 different pillar heights, 6 different surface characteristic energy values, and a wide range of droplet velocities. The results show that there is no obvious difference among the dynamical behaviors for nanodroplets, whose radii are in a range from 35 to 45 Å, impinging on a solid surface. With the increase of droplet velocity, the wetting pattern of steady nanodroplets first transfers from Cassie state (V0 = 2–3 Å/ps) to Wenzel state (V0 = 4–10 Å/ps), then it returns to the Cassie state (V0 = 11–13 Å/ps) again. Nanodroplets bounce off the solid surface when V0 > 13 Å/ps. The relationship between the maximum spreading time and droplet velocity is presented. Inflection points in the curve of the relationship are discovered and their formation mechanism is studied. The spreading factors of steady states for nanodroplets with velocity lower than 9 Å/ps are nearly the same; however, they decrease gradually for nanodroplets with velocity higher than 9 Å/ps. In addition, the increasing height of square nanopillars facilitates the transition from Wenzel state to Cassie state and reduces the spreading radius of steady nanodroplets. The mechanism, which yields Wenzel state when the nanodroplets impinge on solid surface with lower height nanopillars, is investigated. In the spreading stage, spreading radii of nanodroplets impinging on surfaces with different height nanopillars are almost identical. The influence of nanopillar height mainly plays a role in the retraction stage of droplets and it fades away as the height further increases. Moreover, the higher surface characteristic energy benefits the spreading of nanodroplets and reduces the retraction time. Especially, nanodroplets do not experience retraction stage, and the spreading stage is kept until the nanodroplets reach a stable state when the surface characteristic energy is increased to 0.714 kcal/mol. Compared with the spreading factor, the centroid height of nanodroplet is very sensitive to the change of surface characteristic energy.

     

    目录

    /

    返回文章
    返回