搜索

x
中国物理学会期刊

真空罐穿舱法兰介质微放电的实验研究

CSTR: 32037.14.aps.70.20210106

Experimental study of multipactor on dielectric of penetration flange for vacuum chamber

CSTR: 32037.14.aps.70.20210106
PDF
HTML
导出引用
  • 介质微放电已经成为制约航天器有效载荷地面研制和在轨可靠运行的重要因素. 本文对航天器环境模拟试验中真空罐穿舱法兰介质表面单边微放电进行了实验研究, 在周期性脉冲信号激励下, 观察到调零信号间歇性局部跳变的现象. 采用三维粒子模拟工具对微放电从起始到饱和的演化过程进行了数值模拟, 结合模拟结果给出了实验现象的物理解释及若干讨论. 研究表明, 在本文采用的脉冲信号配置参数下介质单表面微放电在脉冲内建立并达到饱和、在两个相邻脉冲之间没有射频信号的时段“熄灭”. 所得结果对介质微放电的理论研究和高功率介质微波部件的工程设计具有重要的意义.

     

    The potential, unexpected occurrence of dielectric multipactor on the dielectric surfaces in high-power radio frequency and microwave components has become a severe constraint in the research and development of space-borne payloads of space vehicles such as satellites and space stations on the ground and their long-term reliable operations in the orbit. In this experimental research, the single-surface multipactor occurring on the dielectric surface of a penetration flange originally designed for a vacuum chamber used in environmental simulation tests of spacecraft is experimentally investigated and compared with the corresponding full-wave simulated results. Under the excitation of periodic pulsed sinusoidal signals, the unusual experimental phenomena of intermittent local jumps of nulling signals in the process of multipactor are repeatedly observed based on an agile nulling experimental system. Taking advantage of the full-wave, three-dimensional (3D) particle-in-cell simulation tool, CST Particle Studio, the entire evolution process of the dielectric multipactor, from its onset to its saturation, is simulated and carefully examined. Combining the results obtained by full-wave 3D particle simulations, some physical explanations and discussion on such phenomena are presented. It is found that under the configuration parameters of pulse signals adopted in this multipactor experiment, the transition of a single-surface dielectric multipactor from its onset to the saturation state can be finished within a single pulse. However, its transition from the saturation state to turning off can last between consecutive pulses in the absence of any high-power radio frequency signals. The obtained result is important for both the theoretical study and the engineering development of high-power dielectric components, providing a new understanding of the dielectric multipactor occurring under the excitation of pulsed high-power electric fields.

     

    目录

    /

    返回文章
    返回