搜索

x
中国物理学会期刊

面向先进光源线站等大科学装置的低温X射线能谱仪原理及应用进展

CSTR: 32037.14.aps.70.20210350

Development of basic theory and application of cryogenic X-ray spectrometer in light sources and X-ray satellite

CSTR: 32037.14.aps.70.20210350
PDF
HTML
导出引用
  • 低温X射线能谱仪兼具高能量分辨率、高探测效率、低噪声、无死层等特点, 能量分辨率与X射线入射方向无关, 在暗弱的弥散X射线能谱测量方面具有明显优势. 基于同步辐射及自由电子激光的先进光源线站、加速器、高电荷态离子阱、空间X射线卫星这类大科学装置的快速发展对X射线探测器提出了更高要求, 因而低温X射线能谱仪被逐步引入到APS, NSLS, LCLS-II, Spring-8, SSNL, ATHENA, HUBS等大科学装置与能谱测量相关科学研究中. 本文从低温X射线能谱仪的工作原理及分类、能谱仪系统结构、主要性能指标以及国内外大科学装置研究现状及发展趋势等方面作简要综述.

     

    Cryogenic X-ray spectrometers are advantageous in the spectrum research for weak and diffusive X-ray source due to their high energy resolution, high detection efficiency, low noise level and non-dead-layer properties. Their energy resolution independent of the incident X-ray direction also makes them competitive in diffusion source detection. The requirements for X-ray spectrometers have heightened in recent years with the rapid development of large scientific facilities where X-ray detection is demanded, including beamline endstations in synchrotron and X-ray free electron laser facilities, accelerators, highly charged ion traps, X-ray space satellites, etc. Because of their excellent performances, cryogenic X-ray detectors are introduced into these facilities, typical examples of which are APS, NSLS, LCLS-II, Spring-8, SSNL, ATHENA, HUBS. In this paper, we review the cryogenic X-ray spectrometers, from the working principle and classification, system structure, major performance characteristics to the research status and trend in large scientific facilities in the world.

     

    目录

    /

    返回文章
    返回