搜索

x
中国物理学会期刊

Y型微通道内气泡非对称破裂行为的数值研究

CSTR: 32037.14.aps.71.20210832

Numerical study of asymmetric breakup behavior of bubbles in Y-shaped branching microchannels

CSTR: 32037.14.aps.71.20210832
PDF
HTML
导出引用
  • 基于微通道两相流的微流控技术已得到广泛的应用, 精确控制通道中气泡或液滴的尺寸对相关微流控系统的设计起到至关重要的作用. 本文基于流体体积法重构Y型微通道内的气泡破裂行为, 系统研究了气泡无量纲尺寸(1.2—2.7)、出口流量比(1—4)以及主通道雷诺数(100—600)对气泡破裂行为的影响. 发现气泡非对称破裂过程分为3个阶段: 延伸阶段、挤压阶段和快速破裂阶段. 在气泡初始尺寸较小或出口流量较大的情况下, 气泡不破裂, 只经历延伸阶段和挤压阶段. 进一步针对不同尺寸和出口流量比揭示了气泡的4种破裂模式: 隧道-隧道破裂、阻塞-阻塞破裂、隧道-阻塞破裂和不破裂. 随着出口流量比的增大, 气泡的破裂过程逐渐变为非对称破裂, 其破裂模式沿隧道-隧道破裂/阻塞-阻塞破裂、逐渐向隧道-阻塞破裂和不破裂方向转变. 在此基础上获得了不同雷诺数和初始气泡尺寸下, 气泡破裂的临界流量比以及气泡破裂后子气泡体积比随出口流量比的变化规律并提炼了相应的准则关联式, 可为精确调控破裂后子气泡的尺寸提供理论指导.

     

    Microfluidic technology based on microchannel two-phase flow has been widely used. The precise control of the bubble or droplet size in the channel plays a crucial role in designing the microfluidic systems. In this work, the bubble breakup behavior in Y-shaped microchannel is reconstructed based on the volume of fluid method (VOF), and the effects of bubble dimensionless size (1.2–2.7), outlet flow ratio (1–4) and main channel Reynolds number (100–600) on the bubble breakup behavior are systematically investigated. The bubble asymmetric breakup process is found to be divided into three stages: extension stage, squeeze stage, and rapid pinch-off stage. In the case of small initial bubble size or relatively high outlet flow rate, the bubble does not break, but only experiences the extension stage and the squeezing stage. Four flow patterns of bubble breakup are further revealed for the bubbles with different sizes and outlet flow ratios: tunnel-tunnel breakup, obstruction-obstruction breakup, tunnel-obstruction breakup, and non-breakup. With the increase of outlet flow ratio, the breakup process of the bubble gradually becomes asymmetrical, and the flow pattern shifts along the tunnel-tunnel breakup and the obstruction-obstruction breakup, gradually turns toward the tunnel-obstruction breakup and non-breakup. On this basis, the critical flow ratio of bubble breakup and the variation of daughter bubble volume ratio with outlet flow ratio are obtained for different Reynolds numbers and initial bubble sizes, and the corresponding criterion correlation equation is refined, which can provide theoretical guidance for accurately regulating the daughter bubble size after breakup.

     

    目录

    /

    返回文章
    返回