搜索

x
中国物理学会期刊

Rydberg原子nS1/2→(n + 1)S1/2双光子激发EIT-AT光谱

CSTR: 32037.14.aps.71.20211458

nS1/2→(n+1)S1/2 two-photon excitation EIT-AT spectrum of Rydberg atom

CSTR: 32037.14.aps.71.20211458
PDF
HTML
导出引用
  • 主要研究了热原子蒸气池中铯Rydberg原子nS1/2→(n + 1)S1/2微波耦合的双光子光谱. 铯原子基态(6S1/2)、第一激发态(6P3/2)、Rydberg态(69S1/2)形成阶梯型三能级系统, 弱探测光作用于基态到激发态6S1/2→6P3/2的跃迁, 强耦合光则作用于6P3/2→69S1/2的Rydberg跃迁形成电磁感应透明(EIT)效应, 实现对Rydberg原子的光学探测. 频率fMW = 11.735 GHz的微波场耦合69S1/2→70S1/2的Rydberg跃迁, 形成微波双光子光谱. 利用EIT-AT分裂光谱研究微波电场强度对双光子光谱的影响. 研究表明: 在强微波场作用时, EIT-AT分裂与微波场功率成正比, 而弱微波场时的EIT-AT分裂与微波场功率成非线性依赖关系, 理论计算与实验测量结果相一致. 本文的研究对微波电场的精密测量具有一定的指导意义.

     

    In this work, we present an nS1/2→(n + 1)S1/2 two-photon excitation EIT-AT spectrum of Rydberg atom in the vapor cell. A ground state (6S1/2), a first excited state (6P3/2) and Rydberg state (69S1/2) of cesium atoms constitute a three-level system. A weak probe laser locking to the transition of 6S1/2 (F = 4)→6P3/2 (F′ = 5) couples the ground-state transition, and the strong coupling laser drives the Rydberg transition of 6P3/2→69S1/2 to yield electromagnetically induced transparency (EIT) effect, which realizes the optical detection of Rydberg atoms. Two Rydberg 69S1/2 and 70S1/2 levels are coupled with the microwave field at a frequency of fMW = 11.735 GHz, forming a microwave two-photon spectrum. To observe the influence of microwave electric field power on two-photon spectrum, we investigate the microwave coupled Rydberg EIT-AT spectra at different microwave fields. The measurements show that the EIT-AT splitting interval is proportional to the square of the microwave electric field at strong microwave field, and indicvates a nonlinear dependence at weak microwave electric field. The theoretical calculation accords with the experimental measurement. The work here is of significance in precisely measuring the microwave electric field.

     

    目录

    /

    返回文章
    返回