搜索

x
中国物理学会期刊

基于最短路径长度的空间网络路由

CSTR: 32037.14.aps.71.20211621

Routing in spatial networks based on shortest path length

CSTR: 32037.14.aps.71.20211621
PDF
HTML
导出引用
  • 以通信网、电力网、交通网为代表的很多复杂网络以传输负载为基本功能. 在这些网络中, 网络的吞吐量是衡量网络传输性能的重要指标, 如何提升网络的吞吐量是研究热点之一. 不少研究人员提出了不同的路由算法, 通过调节传输路径来提高网络吞吐量. 但之前的研究很少考虑网络中节点的空间位置. 本文针对空间网络提出了一种高效的路由策略, 通过节点位置得到路径长度; 采用该算法, 负载从源节点沿着最短长度的路径传输到目标节点. 为了检验算法的有效性, 采用网络从自由流状态转变成拥塞状态的相变点Rc来衡量网络的吞吐量. 在匀质和异质空间网络上的仿真表明, 与传统的最少跳数路由策略相比, 本文提出的基于最短路径长度的路由算法能有效提高空间网络的吞吐量.

     

    In many complex networks, such as communication networks, power grids, and transportation networks, the main task is load transmission from sources to destinations. Therefore, the transmission throughput is a very important indicator to measure the network performance, and improving the throughput becomes one of the hotspots in the research of these complex networks. Many researchers have proposed different routing algorithms to improve the network throughput. However, few of them considered the spatial location of nodes in the network. Indeed, many real-world networks can be modeled by spatial networks, where the spatial location of nodes plays a vital role in determining the structure and dynamic behaviors of such networks. Specifically, when the locations of nodes are considered, each link has a length. And the shortest path may have different meaning. Traditionally, the shortest path indicates the path which passes the least number of links from source to destination, or the least number of hops. However, when the length of link is taken into account, the least number of links does not mean the least summation of link lengths along the path. The latter can be called the shortest path length. To this end, we proposes an efficient routing strategy for spatial networks based on the shortest path length in this work. In order to test the effectiveness of the algorithm, the network throughput R_\rm c is used, at which the network changes from a free flow state to a congestion state, to measure the performance of the network. Simulations of homogeneous and heterogeneous spatial networks show that compared with the traditional least number of hops routing strategy, the routing algorithm based on the shortest path length proposed in this paper can effectively improve the throughput of the network. The routing algorithm proposed in this paper can be applied to many real-world spatial networks for improving their performances.

     

    目录

    /

    返回文章
    返回