搜索

x
中国物理学会期刊

运动颗粒流中的摩擦起电

CSTR: 32037.14.aps.71.20211647

Triboelectrification in moving particle flow

CSTR: 32037.14.aps.71.20211647
PDF
HTML
导出引用
  • 绝缘颗粒系统的摩擦带电现象是一种普遍现象, 但至今仍未得到很好的认识. 月球及火星表面漂浮着大量尘埃颗粒, 这将严重影响探测设备的太阳能帆板、散热和观察系统等的正常工作. 近年来, 电帘除尘方法被认为是在月表进行尘埃防护的有效手段, 研究表明颗粒表面摩擦带电对月尘静电来源贡献最大, 因此正确理解颗粒摩擦带电的机理对分析尘埃颗粒的运动规律至关重要. 本文建立了一个基于高能态电子假定的分析模型来预测颗粒间的摩擦电荷分布. 计算了颗粒摩擦生电与颗粒粒度的依赖关系, 以及粒度范围对摩擦电荷产生的概率大小的影响. 揭示了电荷分布的一个上限, 并讨论了可能的原因. 对粒子碰撞过程中的电荷转移进行了粒子动力学模拟, 验证了理论预测结果.

     

    Triboelectrification in an insulative granular system is a common natural phenomenon, but until now it has not been well understood. The space on the moon or Mars is suffused by a large amount of fine dust. These tiny dust particles are so adhesive that they can easily stick to any exposed surfaces, which may provoke serious problems, such as reducing the efficiency of solar panels, and resulting in the thermal control failure and the false instrument readings. In recent years, dust removal by using an electrodynamic field is considered as an effective method to mitigate dust pollution. Research shows that the triboelectrification on the particle surface contributes most to the electrostatic source of lunar dust. Consequently, the study of the mechanism of triboelectrification is very important in removing dust particles. In this paper, an analytical model based on the high-energy electron hypothesis is developed to predict the triboelectric charge distribution among particles. The particle size dependence of the tribo-charge is obtained, and the influence of the size range on the tribo-charge probability is also demonstrated. An upper limit for the charge distribution is revealed, and its possible cause is discussed. The particle dynamics simulation is carried out to investigate the charge transfer during particle collisions, thereby verifying the prediction results obtained by theoretical analysis.

     

    目录

    /

    返回文章
    返回