搜索

x
中国物理学会期刊

PbBi3低温合金薄膜的制备和超导性质

CSTR: 32037.14.aps.71.20220050

Structural and superconducting properties of low-temperature ultrathin PbBi3 films

CSTR: 32037.14.aps.71.20220050
PDF
HTML
导出引用
  • 铋(Bi)和铅(Pb)都是重元素, 有很强的自旋-轨道耦合作用, 由于原子半径接近, 可形成丰富的原子取代合金结构. 尽管对高温合金相有了较深入的研究, 但对其低温物相的结构和超导物性的认识还很不全面. 本文采用低温共沉积和低温退火的方法, 在Si(111)-(7 × 7)衬底上制备了一种基于Bi(110)单晶结构中部分Bi原子被Pb取代的铅铋合金低温相超薄膜新结构, 利用扫描隧道显微术(STM)对其结构和电子学性质进行了表征. 通过结构表征, 确定了合金薄膜表面呈现\sqrt 2 \times \sqrt 2 R45^ \circ 重构的PbBi3合金相, 其母体Bi(110)结构中25%的Bi原子被Pb取代了. 通过STM谱学测量, 发现合金相PbBi3为超导相. 变温实验表明, PbBi3相的超导转变温度为6.13 K. 在外加垂直磁场下出现的磁通涡旋结构表明PbBi3薄膜是第II类超导体, 估算出上临界磁场的下限为0.92 T. 测量了由Bi(110)-PbBi3组成的共面型和台阶型正常金属-超导体异质结中的邻近效应, 并研究了外加磁场对超导穿透深度影响. 采用超导针尖与PbBi3衬底形成超导-真空-超导隧道结, 在超导能隙中观察到零偏压电导峰, 进一步证实了PbBi3的超导转变温度.

     

    Bismuth (Bi), as a stable heaviest element in the periodic table of elements, has strong spin-orbit coupling, which has attracted a lot of attention as the parent material of various known topological insulators. Previous calculations predicted that Bi(111) with a thickness less than eight bilayers and the ultrathin black-phosphorus-like Bi(110) films are single-element two-dimensional (2D) topological insulators. However, it is generally believed that these crystalline bismuth phases are not superconducting or their transition temperature should be lower than 0.5 mK. Lead (Pb) is a good superconducting elementary material, and there is a relatively small difference in radius between the Bi atom and Pb atom. According to the Hume-Rothery rule, it is expected that Pb/Bi alloys in an arbitrary ratio should be superconducting. One may thus expect to form crystalline Bi based superconductors by Pb substitution, which might host intriguing topological superconductivity. While our previous work has demonstrated a low-temperature stable Pb1–xBix (x~0.1) alloy phase in which Pb in the Pb(111) structure is partially replaced by Bi, the Bi crystalline structure-based phases of the superconducting alloys still lack in-depth research. Here, we report a new low-temperature phase of Pb-Bi alloy thin film, namely PbBi3, on the Si(111)-(7 × 7) substrate, by co-depositing Pb and Bi at a low temperature of about 100 K followed by an annealing treatment of 200 K for 2 h. Using low-temperature scanning tunneling microscopy and spectroscopy (STM/STS), we characterize in situ the surface structure and superconducting properties of the Pb-Bi alloy film with a nominal thickness of about 4.8 nm. Two spatially separated phases with quasi-tetragonal structure are observed in the surface of the Pb-Bi alloy film, which can be identified as the pure Bi(110) phase and the PbBi3 phase, respectively, based on their distinct atomic structures, step heights and STS spectra. The PbBi3 film has a base structure similar to Bi(110), where about 25% of the Bi atoms are replaced by Pb, and the surface shows a \sqrt 2 \times \sqrt 2 R45^ \circ reconstructed structure. The superconducting behavior of the PbBi3 phase is characterized using variable-temperature STS spectra. We obtain that the superconducting transition temperature of PbBi3 is about 6.13 K, and the 2\varDelta (0)/k_\textBT_\textc ratio is about 4.62 using the fitting parameter of \varDelta (0) = 1.22\text meV at 0 K. By measuring the magnetic field dependent superconducting coherence length, the critical field is estimated at larger than 0.92 T. We further investigate the superconducting proximity effect in the normal metal-superconductor (N-S) heterojunction consisting of the non-superconducting Bi(110) domain and the superconducting PbBi3 domain. The N-S heterojunctions with both in-plane configuration and step-like configuration are measured, which suggest that the atomic connection and the area of the quasi-2D Josephson junctions and the external magnetic field can affect the lateral superconducting penetration length. We also observe the zero-bias conductance peaks (ZBCPs) in the superconducting gap of the PbBi3 surface in some cases at zero magnetic field. By measuring dI/dV spectra at various temperatures and by adopting a superconducting Nb tip, we identify that the ZBCP originates from the superconductor-insulator-superconductor (S-I-S) junction formed between a superconducting tip and the sample. Nevertheless, the Bi(110)-based PbBi3 phase may provide a possible platform to explore the intriguing topological superconducting behaviors at the vortexes under magnetic fields, or in the vicinity of the potentially topological superconducting Bi(110) islands by considering the proximity effect.

     

    目录

    /

    返回文章
    返回