搜索

x
中国物理学会期刊

NbOx忆阻神经元的设计及其在尖峰神经网络中的应用

CSTR: 32037.14.aps.71.20220141

Design of NbOx memristive neuron and its application in spiking neural networks

CSTR: 32037.14.aps.71.20220141
PDF
HTML
导出引用
  • NbOx忆阻器凭借其纳米尺寸、阈值切换及局部有源特性在神经形态计算领域展现出巨大的应用前景. 对NbOx忆阻器动力学特性的深入分析和研究有利于忆阻神经元电路的设计和优化. 本文基于局部有源理论, 采用小信号分析方法对NbOx忆阻器物理模型展开了研究, 定量分析了产生尖峰振荡的区域和条件, 并确定了激励信号幅值和尖峰频率之间的定量关系. 基于上述理论分析, 进一步设计了NbOx忆阻器神经元, 并结合忆阻突触十字交叉阵列, 构建了25×10的尖峰神经网络(spiking neuron network, SNN). 最后, 分别利用频率编码和时间编码两种方式, 有效地实现了数字0到9模式的识别功能.

     

    NbOx memristors show great application prospect in neuromorphic computing due to its nanoscale size, threshold switching, and locally active properties. The in-depth analysis and study of NbOx memristors’s dynamic properties are beneficial to the design and optimization of memristive neuron circuits. In this paper, based on the local active theory, the physical model of NbOx memristor is studied by using the small signal analysis method, and the region and conditions of the peak oscillation are quantitatively analyzed, and the quantitative relationship between the excitation signal amplitude and the peak frequency is determined. Based on the above theoretical analysis, NbOx memristor neurons are further designed and combined with the memristive synaptic crisscross array in order to construct a 25×10 spiking neural network (SNN). Finally, the recognitional function of digital 0 to 9 patterns is effectively realized by using frequency coding and time coding respectively.

     

    目录

    /

    返回文章
    返回