搜索

x
中国物理学会期刊

(111)取向无铅K0.5Na0.5NbO3外延薄膜的相变和电卡效应: 外应力与错配应变效应

CSTR: 32037.14.aps.71.20220234

Phase transitions and electrocaloric effects of (111)-oriented K0.5Na0.5NbO3 epitaxial films: effect of external stress and misfit strains

CSTR: 32037.14.aps.71.20220234
PDF
HTML
导出引用
  • 无铅 K1–xNaxNbO3 薄膜作为传感器以及机电和电卡冷却装置的候选者越来越受到关注. 但是(111)取向K1–xNaxNbO3薄膜的相变与电卡效应的内在关联还并不清楚. 本文首先推导出基于八阶朗道自由能多项式的(111)取向铁电薄膜的热力学势, 并在此基础上建立了K0.5Na0.5NbO3薄膜温度-错配应变相图和室温错配应变-面外应力相图. 重点研究了(111)取向K0.5Na0.5NbO3 薄膜的室温电卡效应的应变和取向控制, 这对于实际的电卡制冷应用至关重要. 研究发现, 在无面外应力和零错配应变下, 三方铁电-顺电相变附近, 30 MV/m电场下K0.5Na0.5NbO3薄膜在居里温度附近(约673 K)最大电卡绝热温变 ΔT 可高达18 K. 施加约–6.7 GPa 的面外应力可以有效地将居里温度降低至室温, 但代价是最大绝热温变ΔT降低至7.5 K. 本工作为应变和取向工程调控 K1–xNaxNbO3基薄膜的相变和电卡性能提供了理论指导.

     

    Lead-free K1–xNaxNbO3 thin films, as a candidate for sensors and electromechanical and electrocaloric cooling devices, have increasingly received attention. However, for (111)-oriented films, the relation between phase transitions and electrocaloric effect is not clear. Here, we derive the thermodynamic potential of (111)-oriented thin film ferroelectrics K1–xNaxNbO3 based on the 8th order polynomial function, and then establish the temperature-misfit strain and out-of-plane stress-in-plane misfit strain phase diagrams and calculate electrocaloric (EC) entropy changes ΔS and temperature changes ΔT. This study focuses on mechanical and orientation controls of room-temperature EC effect of K0.5Na0.5NbO3 films, which is critical for environmentally friendly electrocaloric refrigeration applications in practice. Under the stress-free and zero misfit strain conditions, the (111)-oriented K0.5Na0.5NbO3 film in an electric field of 30 MV/m has a maximum EC ΔT of ~18 K near the rhombohedral ferroelectric-paraelectric phase transition temperature (about 673 K). However, an out-of-plane stress of about –6.7GPa can reduce the optimal operating temperature to room temperature where the K0.5Na0.5NbO3 film has the EC ΔT of ~7.5 K under the action of applied electric field of 30 MV/m. The present work provides theoretical guidance for exploring the strain engineering and orientation engineering of K1–xNaxNbO3-based thin films with optimized electrocaloric and electromechanical properties.

     

    目录

    /

    返回文章
    返回