搜索

x
中国物理学会期刊

基于复数主从光学相干层析成像相位信息的离散界面快速定位方法

CSTR: 32037.14.aps.71.20220444

A method of fast locating discrete interface based on phase information of complex master-slave optical coherence tomography

CSTR: 32037.14.aps.71.20220444
PDF
HTML
导出引用
  • 鉴于谱域光学相干层析成像(spectral-domain optical coherence tomography, SD-OCT)系统通常存在非线性采样与色散失配等问题, 需要额外的数据处理步骤. 此外, 所需要的成像区域往往是整个成像区域的一小部分, 对于整个成像区域的计算带来了算力资源浪费, 而且在离散界面的定位方面, 有限的轴向分辨率下亚像素偏差的存在限制了界面的测量精度. 针对以上问题, 本文提出了一种基于复数主从(complex master slave, CMS) OCT相位信息的离散界面快速定位方法. 联合谱域与深度域的相位信息, 精确求解CMS-OCT的重建模板, 并利用CMS-OCT的相位信息, 实现高精度的光程差检测与离散界面定位. 最后, 通过精密光学量规和光学透镜离散界面实验验证了所提出方法能够在快速定位的同时, 保持较高的分辨率和稳定性. 本文所提出的方法有效地解决了SD-OCT系统的非线性采样与色散失配问题, 实现了局域范围内的高精度界面快速定位, 有望促进SD-OCT在光学透镜离散界面测量方面的应用.

     

    Spectral-domain optical coherence tomography (SD-OCT) system has the advantages of non-invasive, non-contact, fast imaging and low cost. It has important applications in the measurement of discrete interface of optical lens. However, the interference spectrum collected by spectral domain OCT system inevitably encounters some problems such as the unequal interval spectrum sampling and chromatic dispersion between two interference arms. In order to ensure that the axial resolution and sensitivity of the system are not reduced, subsequent data processing steps such as spectrum resampling and dispersion compensation need adding, which greatly reduces the real-time performance of measurement. In addition, in the actual measurement process, the required imaging area is often only a small part of the whole imaging area, the calculation of the whole imaging area brings a certain waste of computing power and resources. Moreover, in the positioning of discrete interface, the existence of sub-pixel deviation under limited axial resolution limits the measurement accuracy of interface. To solve the above problems, in this work proposed is a method of fast locating discrete interfaces based on complex master slave (CMS) OCT phase information. By combining the phase information of spectral domain and depth domain, the reconstruction template of CMS-OCT is solved accurately, and the phase information of CMS-OCT is used to achieve high-precision optical path difference detection and discrete interface location. Finally, experiments with precise optical gauge and discrete interface of optical lens verify that the proposed method can maintain high resolution and stability while fast locating is implemented.

     

    目录

    /

    返回文章
    返回