搜索

x
中国物理学会期刊

神经形态阻变器件在图像处理中的应用

CSTR: 32037.14.aps.71.20220463

Application of neuromorphic resistive random access memory in image processing

CSTR: 32037.14.aps.71.20220463
PDF
HTML
导出引用
  • 随着搭载于边缘终端上的图像与视频等数据密集型应用的日益增长, 基于传统冯·诺依曼架构的互补金属氧化物半导体(complementary metal oxide semiconductor, CMOS)硬件系统正面临着能耗、速度和尺寸等多方面的挑战. 神经形态器件包括具有存算一体特性的电学阻变器件和具有感存算一体特性的光电阻变器件, 因其具有与生物神经系统的高相似度, 及其高能效、高集成度、宽带宽等优势, 在图像处理应用方面展现出巨大发展潜力. 这类器件不仅能够用于加速传统图像低阶预处理和高阶处理中的大量运算, 且能用于实现仿生物视觉系统的高效图像处理算法. 本文介绍了最近的电学及光电神经形态阻变器件, 并结合图像处理算法综述了神经形态阻变器件在图像处理方面的硬件实施和挑战, 并对其发展前景提出了思考.

     

    With the increasing demands for processing images and videos at edge terminals, complementary metal oxide semiconductor (CMOS) hardware systems based on conventional Von Neumann architectures are facing challenges in terms of energy consumption, speed, and footprint. Neuromorphic devices, including resistive random access memory with integrated storage-computation characteristic and optoelectronic resistive random access memory with highly integrated in-sensor computing characteristic, show great potential applications in image processing due to their high similarity to biological neural systems and advantages of high energy efficiency, high integration level, and wide bandwidth. These devices can be used not only to accelerate large numbers of computational tasks in conventional image preprocessing and higher-level image processing algorithms, but also to implement highly efficient biomimetic image processing algorithms. In this paper, we first introduce the state-of-the-art neuromorphic resistive random access memory and optoelectronic neuromorphic resistive random access memory, then review the hardware implementation of and challenges to image processing based on these devices, and finally provide perspectives of their future developments.

     

    目录

    /

    返回文章
    返回