搜索

x
中国物理学会期刊

密度泛函理论研究ZnGeP2晶体中缺陷的稳定性及迁移机制

CSTR: 32037.14.aps.71.20220610

Investigation of stability and migration mechanism of defects in ZnGeP2 crystals by density functional theory

CSTR: 32037.14.aps.71.20220610
PDF
HTML
导出引用
  • ZnGeP2晶体是3—5 μm中红外激光输出的最好频率转换材料, 可实现激光器的全固态化和大功率输出. 但在8—12 μm处由于本证缺陷导致的吸收带与光参量振荡器的抽运波长交叠, 限制了光参量振荡器的应用性能, 使其无法实现远红外激光输出. 本论文采用密度泛函理论讨论了ZnGeP2晶体6种缺陷结构的形成能与缺陷迁移机制. 结果表明 \textV_\textP 和VGe两种缺陷结构较难形成, \textV_\textZn^- , \textZ\textn_\textGe , \textGe_\textZn^+ \textG\texte_\textZn\text + \textV_\textZn 四种缺陷容易形成. 当Ge原子微富余Zn原子, 温度为10 K, 500 K和600 K时, \textV_\textZn^- 形成能小于 \textGe_\textZn^+ , 当温度为273 K和400 K时, \textGe_\textZn^+ 形成能小于 \textV_\textZn^- . 晶体的体积膨胀率与缺陷形成能的关系为负相关, 即晶体体积膨胀率越大, 缺陷形成能越低. 差分电荷密度分析显示GeZn和VZn + GeZn两种缺陷结构中原子间电子云密度增强, 空位缺陷(VZn和VGe)与反位缺陷(GeZn和ZnGe)结合形成联合缺陷后, 空位缺陷格点处电子云密度增强. 当温度为10 K时, ZnGeP2晶体的吸收光谱显示VGe, VZn, ZnGe和GeZn四种缺陷结构在0.6—2.5 µm有较明显吸收. VZn的迁移能最低, VGe迁移能最高. VP在迁移过程中迁移能与空间位阻有关, 而VGe和VZn的迁移能与原子间距离有关.

     

    ZnGeP2 crystals are the frequency conversion materials with the excellent comprehensive performances in a range of 3–5 μm. However, the overlap of the absorption band and the pump wavelength range of optical parametric oscillator at 8–12 μm limits the application performance of the optical parametric oscillator and makes it impossible to achieve a far-infrared laser output. In this work, the formation energy and migration mechanism of six kinds of defects of ZnGeP2 crystal are discussed by density functional theory. The results show that two defective structures of \rmV_Pand \rmV_Ge are difficult to form, while four defective structures of \rm V_\rm Zn^ -, \rmZn_Ge, \rm Ge_\rm Zn^ + and \rm Ge_\rm Zn + V_\rm Zn are easy to create. When the number of Ge atoms are slightly more than that of Zn atoms in ZnGeP2 crystals, the vacancy defects \rm V_\rm Zn^ - form more easily than antistructure defects \rm Ge_\rm Zn^ + at 10 K, 500 K and 600 K, but the antistructure defects \rm Ge_\rm Zn^ + are easier to form than the vacancy defects \textV_\textZn^- at 273 K and 400 K. There is a negative correlation between the volume expansion rate and the defect formation energy of ZnGeP2 crystal. The larger the volume expansion rate, the lower the defect formation energy is. The differential charge density shows that the electron cloud density among the atoms is enhanced in the defective structures of GeZn and VZn+GeZn. The electron cloud density at the lattices of vacancy defects is enhanced when the vacancy defects (VZn and VGe) and antistructure defects (GeZn and ZnGe) form the joint defects. Comparing with the defect-free cells, the charge of Zn atoms increases significantly, that of Ge is significantly reduced, and that of P does not change in the antistructure defect ZnGe or GeZn. The absorption spectra of ZnGeP2 crystal at 10K show that there is the significant absorption in a wavelength range from 0.6 μm to 2.5 μm for the four defective structures: VGe, VZn, ZnGe and GeZn, while the absorption in this range is small for the defective structures VP and GeZn+VZn. The VZn has the lowest migration energy, while VGe has the highest. The difficulty for VP to migrate depends on the space resistance, while the difficulty for VGe and VZn to migrate depend on the inter-atomic distance. This may be related to the small radius and high proportion of P atoms and the large radius and low proportion of Ge and Zn atom in ZnGeP2 crystal.

     

    目录

    /

    返回文章
    返回