-
吸波材料广泛应用于国防雷达波隐身和民用电磁屏蔽领域, 吸波材料的吸波性能由复合材料的电磁参数和厚度共同决定. 在实际加工过程中, 吸波材料的反射损耗峰强度随厚度的变化关系和带宽的理论设计与工程实践存在一定偏离, 并且反射损耗吸收峰的强度随厚度变化规律和反射损耗吸收峰的带宽机理研究鲜有报道, 因此, 对吸波材料的反射损耗峰的强度随厚度的变化关系及带宽机理的深入性原理研究有着迫切的需求. 本文通过共沉淀-还原扩散工艺制备易面型Y2Co17/聚氨酯(PU)软磁复合材料并测量得到电磁参数, 基于界面反射模型研究了雷达波在吸波涂层空气界面的反射性能, 确定了匹配阻抗和吸波材料匹配厚度的依赖关系, 进一步利用匹配阻抗参数设计出4—18 GHz内不同厚度的吸波复合材料反射损耗峰强度持续稳定地小于 –10 dB, 6—18 GHz内不同厚度的吸波复合材料反射损耗峰强度持续稳定地小于 –20 dB. 根据界面反射模型对匹配厚度处反射损耗峰的带宽进行了深入的原理性讨论, 理论计算与测量值吻合.Wave absorbing materials are widely used to prevent military equipment from being detected by radar wave and also serve as civil electromagnetic shielding. The absorbing properties of wave absorbing materials are determined by a combination of the electromagnetic parameters and the thickness of the composite material. In the actual case, the theoretically designed reflection loss peak intensity and the bandwidth of wave absorbing materials deviate from the engineered values. There are few reports on the mechanism about the variation of the intensity of the reflection loss absorption peak with thickness and the bandwidth of the reflection loss absorption peak. In this work, based on an interfacial reflection model, the reflective properties of radar wave at the air interface of the absorbing coating are investigated. The dependence of the matching impedance on the matching thickness of the absorbing material is determined, and the matching impedance parameters are further used to design the absorbing composites, which exhibit excellent microwave absorption properties, i.e. an average value of reflection loss is below –10 dB at 4–18 GHz in different thickness wave absorbing materials, and an average value of reflection loss is below –20 dB at 6–18 GHz in different thickness wave absorbing materials. The bandwidth of the reflection loss peak at the matched thickness is discussed in depth in principle based on the interface reflection model, and the theoretical calculations accord with the experimental results.
-
Keywords:
- rare earth soft magnetic composites /
- co-precipitation-reductive diffusion /
- interface reflection model /
- reflection peak bandwidth








下载: