搜索

x
中国物理学会期刊

原子级控制的约瑟夫森结中Al2O3势垒层制备工艺

CSTR: 32037.14.aps.71.20220820

Preparation of Al2O3 tunnel barrier layer in atome-level controlled Josephson junction

CSTR: 32037.14.aps.71.20220820
PDF
HTML
导出引用
  • 传统热氧化方式制备约瑟夫森结中AlOX势垒层是将高纯度氧气扩散到Al表面进行, 但该方式制备的势垒层氧化不完全, 厚度难以精准控制. 本文采用原子层沉积方式在金属Ti表面逐层生长Al2O3势垒层, 并制备出三明治结构的Ti/Al2O3/Ti约瑟夫森结. 通过调节Al2O3势垒层的沉积厚度和约瑟夫森结的面积研究了其相应的微观结构及电学性质. 实验结果表明, 原子层沉积方式生长的单层Al2O3薄膜厚度约为1.17 Å(1 Å = 10–10 m), 达到原子级控制势垒层厚度, 通过调节势垒层厚度实现了对结室温电阻值的控制, 并通过优化结面积获得了室温电阻均匀性良好的约瑟夫森结.

     

    The AlOX tunnel barrier in Josephson junctions prepared by conventional thermal oxidation method is formed by diffusing high-purity oxygen into the surface of Al. But the tunnel barrier fabricated by this method is not completely oxidized, and the thickness of barrier is hard to control accurately. In this work, we use atomic layer deposition to grow Al2O3 tunnel barrier on the surface of Ti. The sandwich structure of Ti/Al2O3/Ti Josephson junction is grown layer by layer. We investigate the corresponding microstructure and electrical properties by adjusting the thickness of the Al2O3 tunnel barrier and the area of the junction. The experimental results show that the monolayer Al2O3 film is about 1.17 Å (1 Å = 10–10 m), which is grown by atomic layer deposition, achieves atomic-level controlled thickness. The resistance is controlled by adjusting the barrier thickness at room temperature. And we obtain a Josephson junction with good resistance uniformity at room temperature by optimizing the junction area.

     

    目录

    /

    返回文章
    返回