搜索

x
中国物理学会期刊

石墨烯莫尔超晶格的晶格弛豫与衬底效应

CSTR: 32037.14.aps.71.20220872

Lattice relaxation and substrate effects of graphene moiré superlattice

CSTR: 32037.14.aps.71.20220872
PDF
HTML
导出引用
  • 当两个晶格常数不同或具有相对转角的二维材料叠加在一起时, 可形成莫尔超晶格结构, 其电学性质对层间堆垛方式、旋转角度和衬底具有很强的依赖性. 例如, 双层石墨烯的旋转角度减小到一系列特定的值(魔角)时, 体系的费米面附近出现平带, 电子-电子相互作用显著增强, 出现莫特绝缘体和非常规超导量子物态. 对于具有长周期性的莫尔超晶格体系, 层间相互作用所引起的晶格弛豫会使原子偏离其平衡位置而发生重构. 本文主要围绕晶格自发弛豫和衬底对石墨烯莫尔超晶格物性的影响展开综述. 从理论和实验的角度出发, 阐述旋转双层石墨烯、旋转三层石墨烯、以及石墨烯与六方氮化硼堆垛异质结等体系中自发弛豫对其能带结构和物理性质的影响. 最后, 对二维莫尔超晶格体系的研究现状进行总结和展望.

     

    When two two-dimensional (2D) materials with different lattice constants or with different rotation angles are superimposed, a moiré superlattice can be constructed. The electronic properties of the superlattice are strongly dependent on the stacking configuration, twist angle and substrate. For instance, theoretically, when the rotation angle of twisted bilayer graphene is reduced to a set of specific values, the so-called magic angles, flat bands appear near the charge neutrality, and the electron-electron interaction is significantly enhanced. The Mott insulator and unconventional superconductivity are detected in the twisted bilayer graphene with a twist angle around 1.1°. For a moiré pattern with a large enough periodicity, lattice relaxation caused by an interplay between van der Waals force and the in-plane elasticity force comes into being. The atomic relaxation forces atoms to deviate from their equilibrium positions, and thus making the system reconstructed. This review mainly focuses on the effects of the lattice relaxation and substrates on the electronic properties of the graphene superlattices. From both theoretical and experimental point of view, the lattice relaxation effects on the atomic structure and electronic properties of graphene-based superlattices, for example, the twisted bilayer graphene, twisted trilayer graphene, graphene-hexagonal boron nitride superlattice and twisted bilayer graphene-boron nitride superlattice are discussed. Finally, a summary and perspective of the investigation of the 2D material superlattice are presented.

     

    目录

    /

    返回文章
    返回