搜索

x
中国物理学会期刊

基于滤波反馈宽带平坦混沌信号的快速物理随机比特产生

CSTR: 32037.14.aps.71.20221173

Fast physical random bit generation of wideband flat chaos signal based on filter feedback

CSTR: 32037.14.aps.71.20221173
PDF
HTML
导出引用
  • 本文提出并实验证明了一种利用具有单滤波器光反馈的半导体激光器产生带宽增强混沌信号的方案. 为了获得高品质的混沌信号, 方案中讨论了滤波器失谐频率和反馈功率等关键参数对混沌信号带宽和平坦度的影响. 结果表明, 通过选择合适的参数, 可以获得带宽为24.4 GHz、平坦度为5.7 dB的混沌信号. 将这种混沌信号作为熵源, 采用8位模数转换采样量化和多位最低有效位异或提取处理实现了320 Gbit/s的随机比特生成并采用国际公认的随机数行业测试标准(NIST SP 800-22)来检验产生的序列, 结果表明, 通过单滤波器光反馈半导体激光器后处理的混沌熵源所获取的随机数序列具有均匀的分布特性, 可以成功通过NIST SP 800-22的全部测试.

     

    Chaotic lasers feature wide spectrum and noise-like features, and extensively used in various fields, such as secure communications and random bit generation (RBG). Since the physical RBG using optical chaos was demonstrated first by Uchida et al., the optical chaos has been widely investigated in terms of chaos bandwidth and flatness, which determines the rate and randomness of RBG. Owing to the natural stability of semiconductor lasers, external perturbation is required to generate chaotic signals, such as optical injection, current modulation, and optical feedback. Among them, a semiconductor laser with optical feedback has attracted wide attention because of its simple structure and rich dynamic behaviors. Nonetheless, this configuration suffers the influence of the relaxation oscillation, which results in a limited bandwidth (a few GHz) and an uneven power spectrum. To obtain broad-spectrum chaotic signals, considerable efforts have been made in recent years. However, these solutions are associated with complex structures that require delicate manipulation because multiple parameters should be matched, so the cost of some of these schemes in terms of the system complexity can potentially outweigh the benefits.
    In this work, we incorporate an optical filter and an amplifier into the feedback loop of a conventional optical feedback system to generate broadband chaotic signals. The effects of the filter detuning frequency and feedback power on the bandwidth and flatness of the chaotic output are investigated experimentally. The experimental results demonstrate that by appropriately adjusting the feedback power and detuning frequency, both the low-frequency components and the high-frequency components of the chaotic output power spectrum can be increased, and the maximum chaotic bandwidth can reach 24.4 GHz with a flatness of 5.7 dB. This phenomenon is attributed to the physical process of beating between the filtered mode and the internal modes of the laser. Furthermore, the optimized chaotic output is processed by retaining the 4 least significant bits and implementing the delayed exclusive-OR (XOR) operation. Our scheme is capable of generating physical random number of the bit rate of 320 Gbit/s, and successfully passes the standard randomness test, i.e. the NIST test (NIST SP 800-22).

     

    目录

    /

    返回文章
    返回