搜索

x
中国物理学会期刊

三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析

CSTR: 32037.14.aps.71.20221365

Theoretical analysis of tunable double plasmon induced transparency in three-ellipse-shaped resonator coupled waveguide

CSTR: 32037.14.aps.71.20221365
PDF
HTML
导出引用
  • 研究了三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应. 三椭圆谐振腔耦合波导结构由1个亮模和2个暗模或1个暗模和2个亮模组成, 类比于原子系统的四能级结构. 为了获得较理想的双重等离子体诱导透明窗口, 利用有限元法数值分析了多种三椭圆谐振腔耦合波导结构的光学透射特性. 针对较佳的三椭圆谐振腔波导结构, 分别讨论波导结构参数(如椭圆腔长轴半径、底部椭圆腔与主波导间耦合距离、椭圆腔间耦合距离、对称破缺度, 以及椭圆腔填充材料有效折射率)对双重等离子体诱导透明效应的影响. 多重透明窗口的数值模拟结果为等离子体诱导透明在等离子体开关及传感器方面的潜在应用提供理论基础.

     

    The tunable double plasmon-induced transparency (PIT) effects are investigated in a waveguide coupled by the three ellipse-shaped resonators. By the finite element method, we study the influences of coupling modes of the three ellipse-shaped resonators, waveguide structure parameters and the refractive indices of dielectric in three ellipse-shaped resonators on double PIT effects. The waveguide structure consists of three ellipse-shaped resonators, and is similar to a four-level structure of the atomic system. The bottom ellipse-shaped resonator can be named a bright mode, the middle and top ellipse-shaped resonators each can be seen as a dark mode. In order to obtain an ideal double PIT transparency window, we also numerically analyze the optical transmission characteristics of structures of several three-ellipse-shaped resonator coupled waveguides. Furthermore, we mainly discuss the transmission spectra in the better three-ellipse-shaped resonator coupled waveguide structure as a function of the radii of the long axis in ellipse-shaped resonators, the coupling distance between the bottom ellipse-shaped resonator and the bus waveguide, the coupling distance between ellipse-shaped resonators, and the symmetry broken degree. In addition, we also consider the effect of the refractive indices of dielectric in three ellipse-shaped resonators on double PIT spectra. It is found that the transmission spectra in the three-ellipse-shaped resonator coupled waveguide have obvious red shift when the refractive indices of dielectric in the three ellipse-shaped resonators increase. All the simulation results may provide the theoretical basis for the potential application of multiple PIT in plasma switches and sensors.

     

    目录

    /

    返回文章
    返回