搜索

x
中国物理学会期刊

微波谐振腔低气压放电等离子体反应动力学过程

CSTR: 32037.14.aps.71.20221385

Reaction dynamic process of low pressure discharge plasma in microwave resonant cavity

CSTR: 32037.14.aps.71.20221385
PDF
HTML
导出引用
  • 低气压放电是制约航天器微波部件向大功率、小型化方向发展的重要问题. 针对航天器微波部件低气压放电机理尚不明确的关键问题, 本文搭建了低气压射频放电等离子体发射光谱诊断平台, 对微波腔体谐振器低气压射频放电的等离子体反应动力学过程, 及放电对于微波部件的破坏效应进行研究. 获取不同气体压强条件下谐振器内放电等离子体的发射光谱, 发现等离子体内羟基OH(A-X)、激发态氮分子N2(C-B)及氧原子O(3p5P→3s5S0)的密度随气压升高呈现先上升后下降的变化趋势. 对这一现象所蕴含的等离子体反应动力学机理进行了分析, 发现气体压强可通过改变粒子生成与消耗路径及等离子体平均电子温度的方式对等离子体中各粒子的浓度大小产生影响. 研究了等离子体发射光谱随输入功率的变化规律, 发现了不同气压条件下粒子浓度随输入功率的增大呈线性增长的趋势. 本研究为探明低气压射频放电机理及航天器微波部件的可靠性设计提供了参考依据.

     

    Low-pressure discharge is an important problem that restricts the development of microwave components of spacecraft toward high-power and miniaturization. To clarify the mechanism of low-pressure discharge of microwave component in spacecraft, we build an emission spectroscopy diagnostic platform for studying the low-pressure radio frequency (RF) discharge plasma, and investigate the plasma reaction dynamics of low-pressure RF discharge of microwave cavity resonator and the damage effect of discharge on microwave component. The emission spectra of the plasma inside the resonator under different gas pressure conditions are obtained, and it is found that the density of hydroxyl OH (A-X), excited nitrogen molecules N2 (C-B) and oxygen atoms O (3p5P→3s5S0) in the plasma each show a first-increasing and then decreasing trend with the increase of gas pressure. The kinetic mechanism of the plasma reaction behind this phenomenon is analyzed, and it is found that the gas pressure can influence the concentration magnitude of each species in the plasma by changing the species production and consumption paths as well as the average electron temperature of the plasma. The variation law of plasma emission spectrum with the input power is studied, and the trends of linear increase of particle concentration with the increase of input power at different air pressures are found. This study provides a reference for investigating the mechanism of low-pressure RF discharge and the reliable design of spacecraft microwave components.

     

    目录

    /

    返回文章
    返回