搜索

x
中国物理学会期刊

H-Pb-Cl中可调控的巨型Rashba自旋劈裂和量子自旋霍尔效应

CSTR: 32037.14.aps.72.20221493

Giant and tunable Rashba spin splitting and quantum spin Hall effect in H-Pb-Cl

CSTR: 32037.14.aps.72.20221493
PDF
HTML
导出引用
  • 具有巨型Rashba自旋劈裂和量子自旋霍尔效应的材料在自旋电子器件应用中具有重要意义. 基于第一性原理, 提出一种可以将巨型Rashba自旋劈裂和量子自旋霍尔效应实现完美共存的二维(two dimension, 2D)六角晶格材料H-Pb-Cl. 由于系统空间反转对称性的破坏和本征电场的存在, H-Pb-Cl的电子能带中出现了巨型Rashba自旋劈裂现象(αR = 3.78 eV·Å). 此外, H-Pb-Cl的Rashba自旋劈裂是可以随双轴应力(–16%—16%)调控的. 通过分析H-Pb-Cl的电子性质, 发现在H-Pb-Cl费米面附近有一个巨大的带隙(1.31 eV), 并且体系由于Pb原子的s-p轨道翻转使得拓扑不变量Z2 = 1, 这就表明H-Pb-Cl是一个具有巨大拓扑带隙的2D拓扑绝缘体. 我们的研究为探索和实现Rashba自旋劈裂和量子自旋霍尔效应的共存提供了一种优良的潜在候选材料.

     

    Rashba spin splitting and quantum spin Hall effect have attracted enormous interest due to their great significance in the application of spintronics. According to the first-principles calculation, we propose a two-dimensional hexagonal lattice material H-Pb-Cl, which realizes the coexistence of giant Rashba spin splitting and quantum spin Hall effect. Owing to the break of space inversion symmetry and the existence of intrinsic electric field, H-Pb-Cl has a huge Rashba spin splitting phenomenon (αR = 3.78 eV·Å), and the Rashba spin splitting of H-Pb-Cl(–16%—16%) can be adjusted by changing the biaxial stress. By analyzing the electronic properties of H-Pb-Cl, we find that H-Pb-Cl has a huge band gap near the Fermi surface (1.31 eV), and the topological invariant Z2 = 1 of the system is caused by the inversion of s-p orbit, which indicates that H-Pb-Cl is a two-dimensional topological insulator with a huge topological band gap, and the gap is large enough to observe the topological edge states at room temperature. In addition, we further consider the effect of BN and graphane substrates on the topological band gap of H-Pb-Cl by using the H-Pb-Cl (111)-(1×1) /BN (111)-(2×2) and H-Pb-Cl(1×1)/ graphane (2×2) system, and find that the lattice mismatch between H-Pb-Cl (5.395 Å) and BN (2.615 Å) and between H-Pb-Cl (5.395 Å) and graphane (2.575 Å) are about 3% and 4.5%, respectively. According to our calculation results, H-Pb-Cl still retains the properties of topological insulator under the effect of spin orbit coupling, and is not affected by BN nor graphane. Our results show that the nontrivial topological band gap of H-Pb-Cl can be well preserved under both biaxial stress effect and substrate effect. In addition, H-Pb-Cl can well retain the nontrivial topological band gap under the stress of –16%–16%, and thus there are many kinds of substrate materials used to synthesize this material, which is very helpful in successfully realizing preparation experimentally. Our research provides a promising candidate material for exploring and realizing the coexistence of Rashba spin splitting and quantum spin Hall effect. And the coexistence of giant Rashba spin splitting and quantum spin Hall effect greatly broadens the scope of potential applications of H-Pb-Cl in the field of spintronic devices.

     

    目录

    /

    返回文章
    返回