搜索

x
中国物理学会期刊

Al原子的替位掺杂与表面吸附对BiVO4 (010) 晶面光电催化分解水析氧性能的影响

CSTR: 32037.14.aps.72.20221842

Effect of substitution doping and surface adsorption of Al atoms on photocatalytic decomposition of water and oxygen from BiVO4 (010) crystal surface

CSTR: 32037.14.aps.72.20221842
PDF
HTML
导出引用
  • 太阳能光电催化分解水制氢气和氧气是获得可再生能源的可行方案之一, 利用密度泛函理论计算, 对比了替位掺杂和表面吸附过渡金属Al原子对BiVO4 (010)晶面析氧(OER)性能的影响. 结果表明, 两种方式都能有效调控BiVO4的电子结构进而调节其OER性能, 而表面吸附因能改善BiVO4的导电性和光吸收, 降低电子-空穴复合, 增强OER过程中活性位点与含氧中间体之间的相互作用, 降低决速步的过电势, 被认为是提高(010)晶面析氧性能的有效手段. 本工作为设计高效的二维半导体析氧反应的光催化剂提供了重要参考.

     

    Using solar photoelectrochemical decomposition of water to produce hydrogen and oxygen is one of the most feasible approaches to obtaining renewable energy. Compared with hydrogen-evolution reaction (HER), the oxygen-evolution reaction (OER) is very complex, there are four sluggish proton-coupled electron transfer processes. It is critical to improve OER performance. The BiVO4 (010) facet possesses low surface energy, strong visible absorption, and good activity for OER, and is considered as one of the most suitable PEC catalysts. However, its poor electron conductivity, low charge carrier mobility, and high charge recombination rates significantly limit its practical applications. To achieve highly active OER photocatalysts, we modify BiVO4 (010) facet by substitutial doping with Al atom and surface adsorption with Al atom. According to density functional theory calculations, we compare OER performances of these two modified BiVO4 (010) facets. The results show that both approaches can effectively regulate the electronic structure of BiVO4 and then tune OER activity resulting from the change of the structure. Though Al substitutional doping reduces the band gap of the (010) facet and enhances the visible light absorption, the improvement of OER performance is not significant because the doping site is inside and has little influence on the surface active site. Importantly, the surface adsorption of Al atom is considered as an efficient means to improve the OER activity on BiVO4 (010) facet due to the combined action between surface adsorbed Al and active site Bi atoms. Al adsorbed (010) facet exhibits excellent OER catalytic activity: 1) the induction of localized states and the reduction of band gap are conducive to the electronic transition, optical absorption, thus increasing the electrical conductivity; 2) there is lower hole effective mass, and thus effectively enhancing the ability to transfer from anode surface to electrolyte surface, thereby increasing the difference between the effective mass ratio of electron−hole pairs and 1 and effectively reducing the electron-hole recombination; 3) the nteraction between the active sites and oxygen-containing intermediates is reinforced in the OER process, therefore the potential determining step of OER decreases effectively. This work provides an important reference for designing efficient and stable two-dimensional semiconductor-based photocatalysts for OER. We believe that it will arouse great interest of the BiVO4 community and motivate numerous experimental researches.

     

    目录

    /

    返回文章
    返回