搜索

x
中国物理学会期刊

对称分子\textH_\text2^\text + 在强短波激光场中高次谐波椭偏率性质的研究

CSTR: 32037.14.aps.72.20221946

Ellipticity properties of symmetric molecules \textH_\text2^ + in strong and short-wavelength laser fields

CSTR: 32037.14.aps.72.20221946
PDF
HTML
导出引用
  • 通过数值计算, 研究了强短波( 400—600\text nm )激光场中\textH_2^+分子高次谐波辐射的椭偏率性质. 研究表明, \textH_2^+分子在不同激光强度、不同激光波长、不同核间距及不同取向角下高次谐波的椭偏率性质是不同的; 特别是在两中心干涉区, 激发态在高次谐波产生中起着重要作用, 但在不同取向角下, 激发态对谐波椭偏率的影响不同; 分析表明, 这些不同的影响源于沿平行和垂直于激光偏振方向辐射的高次谐波的相对产量, 以及激发态对平行和垂直谐波产量的影响; 此外, 椭偏率的测量检验了强场近似和平面波近似在强短波激光场中是成立的, 并对强短波激光场中分子动力学做了更充分的研究.

     

    Ellipticity properties of high-order harmonic generation (HHG) from symmetric molecules \textH_\text2^ + in strong and short wavelength (less than 800nm) laser fields are numerically investigated. In this study, the ellipticity of harmonic is compared with the corresponding harmonic spectrum and dipole, and the calculation results are analyzed and the results obtained at different laser intensities, different laser wavelengths, different internuclear distances and different orientation angles are compared with each other. Our numerical simulations show that the influences of laser intensity, laser wavelength, internuclear distance and orientation angle on the ellipticity of harmonic are different. Especially in a two-center interference region, the excited state plays an important role in the HHG, but the effects of the excited state on the ellipticity of harmonic are different at different orientation angles. Further analysis shows that these different effects are due to the influence of the excited state on the harmonic yield. Using the numerical scheme, it is determined that in the two-center interference region, the excited state plays an important role in the parallel harmonic spectrum, while the effects of the excited state on the perpendicular harmonics at different angles are all very small, which results in different phase differences between the accurate harmonic spectrum and the harmonic spectrum only returning to the ground state. Overall, the relative yields of the accurate perpendicular harmonics are lower (higher) than those of the accurate parallel harmonics, but the intensities of the perpendicular harmonics, which only return to the ground state, are comparable to (or farther away from) those of the parallel harmonics which are only to return to ground state in the two-center interference regions. Therefore, the small (large) intensity ratio between the accurate perpendicular harmonic and accurate parallel harmonic can be attributed to the contributions of the excited state to harmonics. Then we can conclude that the harmonic spectra that only go back to the ground state show high (small) ellipticity, whereas the accurate harmonic spectra show small (high) ellipticity, resulting in a strong angle dependence of the influence of the excited state on the ellipticity of harmonic. In addition, in the high-order harmonic plateau region, the relative yields of harmonics can be well predicted by the corresponding dipoles, indicating the applicability of tunneling pictures and plane wave approximation in the strong and short-wave laser fields. When the ellipticity of harmonic occurs in the interference region due to the two-center characteristics of the symmetric potential, the results show that the polarization measurement can also be used to detect the structures of symmetric molecules and track the dynamic behaviors of excited states.

     

    目录

    /

    返回文章
    返回