搜索

x
中国物理学会期刊

空间走离对量子光学频率梳压缩特性的影响

CSTR: 32037.14.aps.72.20222343

Effect of spatial walk-off on squeezing properties of quantum optical frequency combs

CSTR: 32037.14.aps.72.20222343
PDF
HTML
导出引用
  • 量子光学频率梳在量子计算、量子信息以及高精度量子测量等领域都有重要的价值, 同步泵浦光学参量振荡器是制备量子光频梳最主要的手段. 本文采用中心波长为815 nm、脉冲宽度为130 fs的锁模飞秒脉冲激光二次谐波泵浦I类共线BiB3O6晶体以制备真空压缩态量子光频梳, 给出了同步泵浦光学参量振荡器中空间走离效应对获得量子光频梳压缩度的影响. 研究表明, 随着晶体长度的增加, 压缩度的增长会受到空间走离效应限制, 经计算在晶体长度为1.49 mm时压缩达到最大. 在此基础上, 本文实验研究了在四种晶体长度下获得的真空压缩态量子光频梳的压缩特性, 当BiB3O6长度为1.5 mm时获得了(3.6±0.2) dB的最大真空压缩, 考虑损耗后为(7.0±0.2) dB, 实验结果与理论分析相符. 该研究揭示了飞秒脉冲光在非线性晶体中存在的空间走离效应是影响量子光频梳压缩特性的重要因素, 为优化量子光频梳的实验测量提供了指导.

     

    Quantum optical frequency combs are of great significance in the fields of quantum computing, quantum information, and high precision quantum measurement, which can be produced by using a degenerate type-I synchronously pumped optical parametric oscillator (SPOPO). When anisotropic crystal is used as a nonlinear medium in the SPOPO, the spatial walk-off effect will occur due to the birefringence effect, which cannot be ignored and will adversely affect the generation of squeezed state. In this work, we investigate the influence of spatial walk-off effect on the squeezing level of quantum optical frequency combs both theoretically and experimentally. A Ti∶sapphire mode-locked femtosecond pulsed laser which produces 130 fs pulse trains at 815 nm with a repetition rate of 76 MHz is utilized as a fundamental source. Its second harmonic at 407.5 nm is used to pump the collinear BiB3O6 (BIBO) crystal for generating the squeezed vacuum frequency comb. It is indicated that as the crystal length increases, the area of interaction between pump light and signal light decreases gradually. Thus the enhancement of squeezing is eventually limited by the spatial walk-off effect. According to the simulations, the squeezing level reaches a maximum value when the crystal length is 1.49 mm. The quantum properties of squeezed vacuum optical frequency combs obtained for four crystal lengths (0.5, 1.0, 1.5 and 2.0 mm) are subsequently measured experimentally. When the length of BIBO is 1.5 mm, the maximum vacuum squeezing of (3.6±0.2) dB is obtained, which is (7.0±0.2) dB after being corrected for detection loss. The experimental results are consistent with the numerical simulations. This study demonstrates that the spatial walk-off effect in nonlinear crystal is a significant factor affecting the quantum optical frequency comb, and the theoretical model presented in this paper can be used to provide a guideline for optimizing the experimental implementation.

     

    目录

    /

    返回文章
    返回