搜索

x
中国物理学会期刊

“机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展

CSTR: 32037.14.aps.72.20230208

“Machine micro/nano optics scientist”: Application and development of artificial intelligence in micro/nano optical design

CSTR: 32037.14.aps.72.20230208
PDF
HTML
导出引用
  • 微纳光学材料与器件是光通信、光传感、生物光子学、激光、量子光学等诸多光学领域的关键. 目前微纳光学设计主要依赖传统数值方法, 存在依赖计算资源、创新效率低、得到全局最优设计困难的难题, 是当前微纳光学设计的瓶颈. 人工智能(artificial intelligence, AI)目前已经在多个学科开展应用, 带来了科学研究的新范式. 本文从微纳光学设计对象、数据集构建、学习任务与算法以及性能度量四个方面对AI在微纳光学设计领域的应用进行综述. 对AI在微纳光学研究中的难点及未来的发展趋势进行了分析与展望.

     

    Micro/nano optical materials and devices are the key to many optical fields such as optical communication, optical sensing, biophotonics, laser, and quantum optics, etc. At present, the design of micro/nano optics mainly relies on the numerical methods such as Finite-difference time-domain (FDTD), Finite element method (FEM) and Finite difference method (FDM). These methods bottleneck the current micro/nano optical design because of their dependence on computational resources, low innovation efficiency, and difficulties in obtaining global optimal design. Artificial intelligence (AI) has brought a new paradigm of scientific research: AI for Science, which has been successfully applied to chemistry, materials science, quantum mechanics, and particle physics. In the area of micro/nano design AI has been applied to the design research of chiral materials, power dividers, microstructured optical fibers, photonic crystal fibers, chalcogenide solar cells, plasma waveguides, etc. According to the characteristics of the micro/nano optical design objects, the datasets can be constructed in the form of parameter vectors for complex micro/nano optical designs such as hollow core anti-resonant fibers with multi-layer nested tubes, and in the form of images for simple micro/nano optical designs such as 3dB couplers. The constructed datasets are trained with artificial neural network, deep neural network and convolutional neural net algorithms to fulfill the regression or classification tasks for performance prediction or inverse design of micro/nano optics. The constructed AI models are optimized by adjusting the performance evaluation metrics such as mean square error, mean absolute error, and binary cross entropy. In this paper, the application of AI in micro/nano optics design is reviewed, the application methods of AI in micro/nano optics are summarized, and the difficulties and future development trends of AI in micro/nano optics research are analyzed and prospected.

     

    目录

    /

    返回文章
    返回