搜索

x
中国物理学会期刊

蛋壳膜电解质栅控氧化物神经形态晶体管

CSTR: 32037.14.aps.72.20230411

Egg shell membrane based electrolyte gated oxide neuromorphic transistor

CSTR: 32037.14.aps.72.20230411
PDF
HTML
导出引用
  • 近年来, 神经形态器件的研究受到了人们的广泛关注, 正在成为人工智能技术发展的重要分支. 与此同时, 天然生物材料具有可降解性、良好的生物相容性、无毒性等多种优势, 在新型便携式智能系统中有重要应用价值. 本文采用蛋壳膜(ESM)作为电解质, 具有极高的室温质子电导率(~6.4×10–3 S/cm)和极高的室温双电层电容(~2.8 µF/cm2), 因此其具有极强的界面双电层静电调控能力. 以此为基础, 研制了氧化铟锡双电层晶体管, 器件具有优异的电学特性. 基于ESM独特的界面双电层调控特性, 在器件上实现了一些重要仿生突触塑性行为, 如兴奋性突触后电流、双脉冲易化和突触滤波. 通过施加突触刺激, 实现了器件的多重突触权重更新. 在此基础上采用人工神经网络实现了手写数字的模式识别, 最佳识别精度约高达92.59%. 因此, 提出的ESM栅控氧化物神经形态晶体管在低成本生物可降解神经形态系统中有一定的应用潜力.

     

    In recent years, the study of neuromorphic devices has received extensive attention. It is becoming an important branch of the development of artificial intelligence technology. At the same time, natural biomaterials have several priorities, such as biodegradability, good biocompatibility, and non-toxicity, and have important value in novel portable intelligent systems. The egg shell membrane (ESM) is a fiber scaffold composed of highly crosslinked collagen, glycoprotein and cysteine-rich eggshell membrane proteins. It has porous morphology, thermal stability, mechanical strength, etc. Therefore, these protein-based fiber membranes have several potential applications, including nanocatalysts, microbial fuel cells, and adsorption of toxic dyes. This study adopts ESM as electrolyte, exhibiting extremely high proton conductivity of about 6.4×10–3 S/cm and extremely high electric-double-layer (EDL) capacitance of about 2.8 µF/cm2 at room temperature. Thus, it has extremely strong interfacial EDL electrostatic modulation capability. Then, indium tin oxide EDL transistor is fabricated by using a single step masking processing and magnetron sputtering deposition technology. The device exhibits typical n-type output curves and transfer curves at low operating voltage. In addition, transfer curves are scanned twice. It is observed that the curves approach to each other quite well, indicating the good stabilities. Owing to the extremely strong proton gating effects, the device exhibits excellent electrical performances. Specifically, ON/OFF ratio, mobility and sub-threshold swing are estimated to be about 2.5×106, about 3.2 cm2/(V·s), and about 213 mV/dec, respectively. With the unique interfacial EDL modulation activities of ESM, the transistor can mimic some important synaptic plasticity behaviors, such as excitatory postsynaptic current (EPSC) and paired pulse facilitation (PPF). With the increase of pre-synaptic spike amplitude, the EPSC value increases correspondingly. With the increase of pre-synaptic spike frequency, the EPSC grain increases, indicating the potentials in high-pass synaptic filtering. By loading 64 potentiation spikes and 64 depression spikes, multi-level synaptic weight can be updated, demonstrating potentiation activity and depression activity. Again, with the same potentiation spikes and depression spikes, synaptic weight value curves approach to each other quite well, indicating that the present ESM gated oxide neuromorphic transistor has good stability. Then, an artificial neural network is adopted to perform supervised learning with Modified National Institute of Standards and Technology (MNIST) database. For simulation, a two-layer multilayer perceptron (MLP) neural network with 400 input neurons, 100 hidden neurons and 10 output neurons is adopted. The best recognition accuracy is as high as 92.59%. The proposed ESM gated oxide neuromorphic transistors have certain potentials in low-cost biodegradable neuromorphic systems.

     

    目录

    /

    返回文章
    返回