搜索

x
中国物理学会期刊

基于依赖强度Dicke模型的量子电池充电性能

CSTR: 32037.14.aps.72.20230578

Charging performance of quantum batteries based on intensity-dependent Dicke model

CSTR: 32037.14.aps.72.20230578
PDF
HTML
导出引用
  • 研究了基于依赖光场强度耦合Dicke模型(也被称为依赖强度Dicke模型)的量子电池中包括最大存储能量、充电时间、能量量子涨落以及最大充电功率等充电性能表现. 首先考虑了能量非保守项(或者叫反旋波项)对量子电池的最大存储能量和最大充电功率的影响, 研究发现: 最大存储能量对能量非保守项权重的增加不是很敏感, 但最大充电功率随能量非保守项权重的增加将会发生显著的变化. 进一步, 研究了在能量保守项和能量非保守项是相同权重下量子电池中最大存储能量、充电时间、能量量子涨落以及最大充电功率的变化特征. 通过与基于单光子和双光子Dicke模型的量子电池的充电性能进行比较, 发现基于依赖强度Dicke模型的量子电池在充电时间和最大充电功率上强于基于单光子Dicke模型的量子电池, 但弱于双光子Dicke模型的量子电池. 而3种Dicke模型在最大存储能量上没有一个确定的强弱关系, 取决于不同的耦合常数. 本文也揭示了虽然在最大充电功率上依赖强度耦合Dicke模型会弱于双光子Dicke模型, 但在两种模型中体现的量子优势即最大充电功率与量子电池单元数满足的幂律关系是相同的. 总之, 本文为进一步研究量子电池提供了一种可选择的理论方案.

     

    Recently, quantum battery based on various physical models from quantum optics model to spin model and its enhancement of charging performance have attracted increasing interest. It has been demonstrated that quantum entanglement is beneficial to the speedup of work extraction. In this paper, by an exact diagonalization approach, we investigate the charging performance of the field intensity-dependent Dicke model (also called intensity-dependent Dicke model) quantum battery, which consists of N qubits collectively interacting with a single-mode cavity. The considered intensity-dependent Dicke model is a generalized Dicke model with a nonlinear-coupling fashion and different weights of energy conserved term and non-conserved term. Firstly, we consider the influences of energy non-conserved term (also called anti-rotating wave term) on the maximum stored energy and maximum charging power in quantum battery. It is shown that the maximum stored energy is not very sensitive to the increase of the weight of energy non-conserved term, but the maximum charging power undergoes a significant change with the increase of the weight of energy non-conserved term. We also show that the maximum charging power increases monotonically with the increase of coupling constant between qubits and cavity, but the maximum stored energy is not monotonically related to the increase of coupling constant. Then, we further examine in detail the characteristics of the maximum stored energy, charging time, energy quantum fluctuation and maximum charging power in the quantum battery under the same weight between energy conserved term and non-conserved term. By comparing the charging performances of quantum battery based on the single-photon-Dicke model with those based on the two-photon-Dicke model, we find that the performances, specifically, the charging time and maximum charging power of the intensity-dependent Dicke quantum battery are better than those of single-photon Dicke quantum battery, but weaker than those of two-photon Dicke quantum battery. Of particular interest is that the relationship of maximum charging power with large quantum cell number in intensity-dependent Dicke quantum battery has the same form as that in the two-photon Dicke quantum battery, i.e. their maximum values of charging power are both proportional to the large quantum cell number squared, specifically, P_\mathrmmax^\mathrmID\propto N^2 and P\mathrm_max^2ph\propto N^2 , which are consistent with the upper bound given by the paper (Gyhm J, Šafránek D, Rosa D 2022 Phys. Rev. Lett. 128 140501). It is worthwhile to mention that Dou et al. (Dou F Q, Zhou H, Sun J A 2022 Phys. Rev. A 106 032212) showed that using the quantum advantage of maximum charging power in the quantum battery based on cavity Heisenberg-spin-chain model P\mathrm_max\propto N^2 can be obtained. Therefore, this study of the charging performance based on the intensity-dependent Dicke quantum battery may provide an alternative approach to the further research on quantum battery.

     

    目录

    /

    返回文章
    返回