搜索

x
中国物理学会期刊

狄拉克量子材料中的输运理论进展

CSTR: 32037.14.aps.72.20230672

Recent progress of transport theory in Dirac quantum materials

CSTR: 32037.14.aps.72.20230672
PDF
HTML
导出引用
  • 狄拉克量子材料具有独特的电子结构, 可以用无质量和有质量的狄拉克方程描述. 从奇异的量子流体到晶体材料的多种系统均已发现了狄拉克量子材料. 由于其拓扑非平庸的能带结构, 狄拉克量子材料表现出丰富有趣的输运现象, 包括纵向负磁阻、量子干涉效应和螺旋磁效应等. 本文介绍狄拉克量子材料输运理论最新进展, 总结了基于狄拉克方程的相关量子输运理论和量子反常效应, 重点关注有质量的狄拉克费米子和量子反常半金属, 介绍了半磁拓扑绝缘体中宇称反常和半整数量子霍尔效应的实现.

     

    Dirac quantum materials comprise a broad category of condensed matter systems characterized by low-energy excitations described by the Dirac equation. These excitations, which can manifest as either collective states or band structure effects, have been identified in a wide range of systems, from exotic quantum fluids to crystalline materials. Over the past several decades, they have sparked extensive experimental and theoretical investigations in various materials, such as topological insulators and topological semimetals. The study of Dirac quantum materials has also opened up new possibilities for topological quantum computing, giving rise to a burgeoning field of physics and offering a novel platform for realizing rich topological phases, including various quantum Hall effects and topological superconducting phases. Furthermore, the topologically non-trivial band structures of Dirac quantum materials give rise to plentiful intriguing transport phenomena, including longitudinal negative magnetoresistance, quantum interference effects, helical magnetic effects, and others. Currently, numerous transport phenomena in Dirac quantum materials remain poorly understood from a theoretical standpoint, such as linear magnetoresistance in weak fields, anomalous Hall effects in nonmagnetic materials, and three-dimensional quantum Hall effects. Studying these transport properties will not only deepen our understanding of Dirac quantum materials, but also provide important insights for their potential applications in spintronics and quantum computing. In this paper, quantum transport theory and quantum anomaly effects related to the Dirac equation are summarized, with emphasis on massive Dirac fermions and quantum anomalous semimetals. Additionally, the realization of parity anomaly and half-quantized quantum Hall effects in semi-magnetic topological insulators are also put forward. Finally, the key scientific issues of interest in the field of quantum transport theory are reviewed and discussed.

     

    目录

    /

    返回文章
    返回