搜索

x
中国物理学会期刊

低惯性与高惯性活性粒子混合体系中的相分离现象

CSTR: 32037.14.aps.72.20230792

Phase separation phenomenon in mixed system composed of low- and high-inertia active particles

CSTR: 32037.14.aps.72.20230792
PDF
HTML
导出引用
  • 自然界中许多活性物质处于高黏度的环境中, 研究者们大多采用过阻尼模型来进行描述. 近年来, 惯性对活性物质运动行为的影响受到了越来越多的关注. 本文通过郎之万动力学模拟, 研究低惯性活性粒子和高惯性活性粒子组成的混合体系中的相分离现象. 研究结果表明, 与单一组分的低惯性粒子体系或高惯性粒子体系相比, 中等密度的混合体系有利于相分离现象的发生, 而高密度的混合体系不利于相分离的发生. 此外, 中等密度下, 在大量低惯性粒子与少量高惯性粒子组成的混合体系中, 由于受到高惯性粒子的撞击, 低惯性粒子的速度增大, 这有利于低惯性粒子与低惯性粒子形成聚集, 从而发生相分离. 但是随着低惯性粒子的减少和高惯性粒子的增加, 高惯性粒子与高惯性粒子之间的弹性碰撞会抑制相分离现象的产生. 本研究有助于深入认识活性物质的集体运动行为, 为材料的设计与控制提供参考.

     

    Active matter refers to a class of substance capable of autonomously moving by harnessing energy from its surrounding environment. The substance exhibits unique non-equilibrium phenomenon, and hence has attracted great attention in the scientific community. Many active matters, such as bacteria, cells, micro-swimmers, and self-propelled colloidal particles, operate in viscous environments and their motions are described usually by using overdamped models. Examples include overdamped active Brownian particle (ABP) model for self-propelled colloidal particles in solution and run-and-tumble (RTP) model for swimming bacteria. In recent years, increasing studies focus on the influence of inertia on the behavior of active matter. Vibrating robots, runners, flying insects, and micro-fliers are typical of active systems under the underdamped condition. The motions of these active matters can be modelled by underdamped Langevin equation, known as the active inertial particle (AIP) model. Previous studies have demonstrated that like the scenarios in ABP systems, motility-induced phase separation (MIPS) phenomena also happen in AIP systems under certain density conditions. However, due to the strong collision-and-rebound effect, aggregation of AIP particles and hence the MIPS are impeded. In complex living/application environments, mixture of different active agents is often seen. Some studies on mixed systems of active matter show that the composition is an important quantity, which influences the phase separation phenomena. In this paper, we study the phase separation phenomena in a mixed system composed of low- and high-inertia active particles by underdamped Langevin dynamics simulations. We find that compared with single-component system, the mixed system is unexpectedly favorable for the occurrence of phase separation at a moderate overall concentration and a certain range of component fraction, while unfavorable for phase separation at a high overall concentration. The underlying mechanism is that the presence of a small number of the high-inertia particles could accelerate the motion of the low-inertia particles, thus facilitating their aggregation and promoting the phase separation. However, when the fraction of the high-inertia particles is large, frequent elastic collisions would disturb the aggregation of the low-inertia particles and suppress the occurrence of phase separation. Our results provide a new insight into the collective behavior of active materials and also a reference for their design and applications.

     

    目录

    /

    返回文章
    返回