搜索

x
中国物理学会期刊

一个具有共存吸引子的四阶混沌系统动力学分析及FPGA实现

CSTR: 32037.14.aps.72.20230795

Dynamic analysis and FPGA implementation of a fourth-order chaotic system with coexisting attractor

CSTR: 32037.14.aps.72.20230795
PDF
HTML
导出引用
  • 为进一步探索共存吸引子中复杂的动力学行为, 构建了一个具有4种类型共存吸引子的四阶混沌系统, 该系统具有4个不稳定的平衡点. 采用相轨迹图、时域波形图、庞加莱映射、Lyapunov指数谱和分岔图等方法对新系统的动力学行为进行分析. 实验结果表明: 随着参数的变化, 系统表现出稳定点、倍周期分岔、共存分岔模式、混沌危机等丰富的动力学行为. 当改变系统参数和忆阻参数时, 发现系统具有不同类型的共存吸引子, 例如: 两个周期吸引子共存、两个单涡卷混沌吸引子共存、两个双涡卷混沌吸引子共存、两个点吸引子共存. 特别地, 该系统还存在共存吸引子的旋转现象. 最后设计了一个非线性反馈控制器, 可使新系统在短时间内实现混沌同步. 采用现场可编程门阵列 (field-programmable gate array, FPGA)硬件平台捕捉到的相图与数值仿真结果保持一致, 证明了该系统的可实现性.

     

    To further explore the complex dynamical behaviors in coexisting attractors, a fourth-order chaotic system with four types of coexisting attractors and four unstable equilibrium points is constructed in this paper. The dynamic behavior of the new system is analyzed by means of phase trajectory diagram, time domain waveform diagram, Poincaré map, Lyapunov exponent spectrum and bifurcation diagram. The experimental results show that as the parameters change, the system exhibits rich dynamic behaviors such as stable points, period-doubling bifurcations, coexisting bifurcation modes, and chaotic crises. When the system parameters and memristive parameters change, it is found that the system has different types of coexisting attractors, such as the coexistence of two periodic attractors, the coexistence of two single-scroll chaotic attractors, the coexistence of two double-scroll chaotic attractors, the coexistence of two point attractors. In particular, the system also has the rotation phenomenon of coexisting attractors. Finally, a nonlinear feedback controller is designed, which can make the new system achieve chaos synchronization in a short time. The phase diagram captured by the field-programmable gate array (FPGA) hardware platform is consistent with the numerical simulation results, which proves the feasibility of the system.

     

    目录

    /

    返回文章
    返回