搜索

x
中国物理学会期刊

基于序列二次规划算法的超小尺寸微纳波长分束器的逆向设计

CSTR: 32037.14.aps.72.20230892

Reverse design of ultracompact micro-nano wavelength beam splitter based on quadratic programming algorithm

CSTR: 32037.14.aps.72.20230892
PDF
HTML
导出引用
  • 微纳波长分束器是光子芯片中一种重要的分光器件. 本文运用序列二次规划智能算法, 设计了尺寸为1.5 μm × 1.5 μm的多个超小波长分束器, 其中Y型双通道分束器可同时实现TE/TM模式的双波长分束, TE模1140和1200 nm两波长的传输效率分别为80%和81%, 消光比分别为18.1和16.3 dB, TM模传输效率分别为70%和67%, 消光比为18.3和15.9 dB; T型分束器实现了光束的180°相向分离, 待分波长1100和1170 nm的传输效率均达到了88%, 消光比分别为16.6和15.0 dB, 是目前尺寸最小的片上波分器; 十字型三通道分束器实现了波长间隔为50 nm的分束, 待分波长1100, 1150和1200 nm传输效率分别为73%, 66%和70%, 消光比分别为17.2, 13.8和13.8 dB; 非对称三通道分束器分束波长间隔仅为20 nm, 待分波长1200, 1220和1240 nm的传输效率分别为61%, 56%和57%, 消光比分别为10.8, 7.9和8.9 dB. 本方法的设计周期短、设计效率高, 且所设计的结构简单、易加工, 本方法适用于多种片上集成元器件的设计, 为微纳片上集成光子器件的设计提供了一种新思路.

     

    Micro-nano wavelength beam splitter is an important beam-splitting device in photonic chips. In this study, the sequence quadratic program is used to design ultra-compact wavelength beam splitters with footprints of 1.5 μm × 1.5 μm. The Y-type dual channel beam splitter can realize TE/TM mode splitting at the same time, the transmissions of TE mode light at 1140 nm and 1200 nm are 80% and 81%, and the extinction ratios are 18.1 dB and 16.3 dB, respectively. The transmissions of TM mode light are 70% and 67%, and the extinction ratios are 18.3 dB and 15.9 dB, respectively. The T-type beam splitter realizes 180° separation angle splitting, and the transmissions of optical power at the wavelengths of 1100 nm and 1170 nm both reach 88%, and the extinction ratios are 16.6 dB and 15.0 dB, respectively. It is the smallest size chip-integrated wavelength beam splitter. The cross-type three-channel beam splitter realizes splitting with a wavelength interval of 50 nm. The transmissions at the wavelengths of 1100, 1150 and 1200 nm are 73%, 66% and 70%, and the extinction ratios are 17.2, 13.8 and 13.8 dB, respectively. The asymmetric three-channel beam splitter realizes splitting with the wavelength interval of 20 nm. The transmissions at the wavelengths of 1200, 1220 and 1240 nm are 61%, 56% and 57%, and the extinction ratios are 10.8, 7.9 and 8.9 dB, respectively. This method has the advantages of a short design period, high design efficiency, simple structure, easy processing, and suitability for designing chip-integrated photonic components. It is expected that it can provide a new idea for designing chip-integrated photonic devices.

     

    目录

    /

    返回文章
    返回