搜索

x
中国物理学会期刊

具有平带的一维十字型晶格中重返局域化现象

CSTR: 32037.14.aps.73.20231393

Reentrant localization phenomenon in one-dimensional cross-stitch lattice with flat band

CSTR: 32037.14.aps.73.20231393
PDF
HTML
导出引用
  • 数值研究了在具有平带的一维十字型晶格中引入准周期调制所诱导的重返局域化现象. 当参数 \varDelta\neq0时, 此平带系统等价于存在一个双频率调制的行为. 通过数值求解分形维度、平均逆参与率、平均归一化参与率等序参量证明了在一维十字型晶格中随着调制强度的增加会经历2次局域转变, 即发生第1次局域化转变进入完全局域相后, 继续增加调制强度, 一些局域态重新恢复成了退局域化态, 进一步增加调制强度, 系统将再次进入完全局域化相. 最后给出了局域化相图. 当参数 \varDelta=0时, 此系统仅存在单频率调制. 通过解析和数值求解证明了, 系统存在解析的迁移率边, 但不存在重返局域化. 该研究结果为平带系统中重返局域化的研究提供了参考, 也为重返局域化的研究提供了新的视角.

     

    In this work, we numerically study the localization properties in a quasi-periodically modulated one-dimensional cross-stitch lattice with a flat band. When \varDelta\neq0, it is found that there are two different quasi-periodic modulation frequencies in the system after the local transformation, and the competing modulation by two frequencies may lead to the reentrant localization transition in the system. By numerically solving the fractal dimension, the average inverse participation ratio, and the average normalized participation ratio, we confirm that the system can undergo twice localization transitions. It means that the system first becomes localized as the disorder increases, at some critical points, some of the localized states go back to the delocalized ones, and as the disorder further increases, the system again becomes fully localized. By the scalar analysis of the normalized participation ratio, we confirm that reentrant localization stably exists in the system. And the local phase diagram is also obtained. From the local phase diagram, we find that when 1.6<\varDelta<1.9, the system undergoes a cascade of delocalization-localization-delocalization-localization transition by increasing λ. When \varDelta=0, there exists only one quasi-periodic modulation frequency in the system. And we analytically obtain the expressions of the mobility edges, which are in consistence with the numerical studies by calculating the fractal dimension. And the system exhibits one localization transition. This work could expand the understanding of the reentrant localization in a flat band system and offers a new perspective on the research of the reentrant localization transition.

     

    目录

    /

    返回文章
    返回