搜索

x
中国物理学会期刊

识别高阶网络传播中最有影响力的节点

CSTR: 32037.14.aps.73.20231416

Identifying influential nodes in spreading process in higher-order networks

CSTR: 32037.14.aps.73.20231416
PDF
HTML
导出引用
  • 识别网络传播中最有影响力的节点是控制传播速度和范围的重要步骤, 有助于加速有益信息扩散, 抑制流行病、谣言和虚假信息的传播等. 已有研究主要基于描述点对交互的低阶复杂网络. 然而, 现实中个体间的交互不仅发生在点对之间, 也发生在3个及以上节点形成的群体中. 群体交互可利用高阶网络来刻画, 如单纯复形与超图. 本文研究单纯复形上最有影响力的传播者识别方法. 首先, 提出单纯复形上易感-感染-恢复(SIR)微观马尔可夫链方程组, 定量刻画单纯复形上的疾病传播动力学. 接下来利用微观马尔可夫链方程组计算传播动力学中节点被感染的概率. 基于网络结构与传播过程, 定义节点的传播中心性, 用于排序节点传播影响力. 在两类合成单纯复形与4个真实单纯复形上的仿真结果表明, 相比于现有高阶网络中心性和复杂网络中最优的中心性指标, 本文提出的传播中心性能更准确地识别高阶网络中最有影响力的传播者.

     

    Identifying influential nodes in spreading process in the network is an important step to control the speed and range of spreading, which can be used to accelerate the spread of beneficial information such as healthy behaviors, innovations and suppress the spread of epidemics, rumors and fake news. Existing researches on identification of influential spreaders are mostly based on low-order complex networks with pairwise interactions. However, interactions between individuals occur not only between pairwise nodes but also in groups of three or more nodes, which introduces complex mechanism of reinforcement and indirect influence. The higher-order networks such as simplicial complexes and hypergraphs, can describe features of interactions that go beyond the limitation of pairwise interactions. Currently, there are relatively few researches of identifying influential spreaders in higher-order networks. Some centralities of nodes such as higher-order degree centrality and eigenvector centrality are proposed, but they mostly consider only the network structure. As for identification of influential spreaders, the spreading influence of a node is closely related to the spreading process. In this paper, we work on identification of influential spreaders on simplicial complexes by taking both network structure and dynamical process into consideration. Firstly, we quantitatively describe the dynamics of disease spreading on simplicial complexes by using the Susceptible-Infected-Recovered microscopic Markov equations. Next, we use the microscopic Markov equations to calculate the probability that a node is infected in the spreading process, which is defined as the spreading centrality (SC) of nodes. This spreading centrality involves both the structure of simplicial complex and the dynamical process on it, and is then used to rank the spreading influence of nodes. Simulation results on two types of synthetic simplicial complexes and four real simplicial complexes show that compared with the existing centralities on higher-order networks and the optimal centralities of collective influence and nonbacktracking centrality in complex networks, the proposed spreading centrality can more accurately identify the most influential spreaders in simplicial complexes. In addition, we find that the probability of nodes infected is highly positively correlated with its influence, which is because disease preferentially reaches nodes with many contacts, who can in turn infect their many neighbors and become influential spreaders.

     

    目录

    /

    返回文章
    返回