搜索

x
中国物理学会期刊

微通道中一类生物流体在高Zeta势下的电渗流及传热特性

CSTR: 32037.14.aps.73.20231685

Electroosmotic flow and heat transfer characteristics of a class of biofluids in microchannels at high Zeta potential

CSTR: 32037.14.aps.73.20231685
PDF
HTML
导出引用
  • 在高壁面Zeta势下, 研究滑移边界条件下满足牛顿流体模型的一类生物流体的电渗流动及传热特性, 流体在外加电场、磁场和焦耳加热共同作用下流动. 首先, 在不使用Debye-Hückel线性近似条件时, 利用切比雪夫谱方法给出非线性Poisson-Boltzmann方程和流函数满足的四阶微分方程及热能方程的数值解, 将所得结果与利用Debye-Hückel线性近似所得结果进行比较, 证明本文数值方法的有效性. 其次, 讨论电磁环境下壁面Zeta势、哈特曼数H、电渗参数m、滑移参数\beta 对流动特性、泵送特性和捕获现象的影响, 并探究焦耳加热参数\gamma 和布林克曼数Br等参数对传热特性的影响. 结果表明, 壁面Zeta势、电渗参数m、滑移参数\beta 的增大对流体速度有促进作用, 而哈特曼数H的增大会抵抗流体流动. 研究进一步表明, 焦耳加热参数\gamma 和布林克曼数Br的增大会导致温度升高.

     

    Peristalsis is an important dynamic phenomenon in the field of biomedical research, and has great application prospects in microscale fluids. In recent years, this biomimetic (peristaltic) phenomenon has gained widespread attention due to its large-scale applications in various medical and industrial fields, such as radiation therapy, peristaltic blood pumps, and drug delivery systems. In this study, the electroosmotic flow and heat transfer characteristics are investigated under high wall Zeta potential and slip boundary conditions for a certain type of biological fluid that satisfies the Newtonian fluid model. Fluid flows under the joint action of external electric field, magnetic field, and Joule heating. Firstly, without using the Debye-Hückel linear approximation, the numerical solutions are given by using the Chebyshev spectral method for the nonlinear Poisson-Boltzmann equation, the fourth-order differential equation satisfied by the stream function, and the thermal energy equation. The results are compared with those obtained by using the Debye-Hückel linear approximation to demonstrate the effectiveness of the numerical method used in this study. Secondly, the effects of wall Zeta potential, Hartmann number H, electroosmotic parameter m, slip parameter \beta are discussed on the flow characteristics, peristaltic pumping, and trapping phenomena under electromagnetic environments, and the influence of Joule heating parameter \gamma and Brinkman number Br is explored on heat transfer characteristics. The results show that 1) wall Zeta potential plays an important role in controlling the velocity of fluid peristaltic flow; 2) the increase of electroosmotic parameter m and slip parameter \beta increases the flow velocity in the central region of the channel, while the increase of Hartmann number H hinders the flow of fluid; 3) these flow behaviors exhibit opposite trends near the channel walls; 4) the number of streamlines captured by peristaltic transport decreases with Hartmann number H and electroosmotic parameter m increasing; 5) the increase of Joule heating parameter \gamma and Brinkman number Br leads temperature to rise.

     

    目录

    /

    返回文章
    返回