搜索

x
中国物理学会期刊

基于GaN/(BA)2PbI4异质结的自供电双模式紫外探测器

CSTR: 32037.14.aps.73.20231698

Self-powered dual-mode UV detector based on GaN/(BA)2PbI4 heterojunction

CSTR: 32037.14.aps.73.20231698
PDF
HTML
导出引用
  • 紫外探测器作为智能光电系统的重要组成部分, 近年来在诸多领域应用广泛, 其中自供电异质结光电二极管的研究显得尤为重要. 本文制备并讨论了一种双模式运行的GaN/(BA)2PbI4异质结紫外光电二极管. 通过金属有机化学气相沉积法在蓝宝石上沉积GaN薄膜, 再在GaN薄膜表面旋涂(BA)2PbI4薄膜, 用于构建平面异质结探测器. 当在+5 V偏压驱动、光强为421 μW/cm2的365 nm紫外光照射下, 响应度(R)和外量子效率(EQE)分别为60 mA/W和20%. 在自供电模式下, 上升时间(τr)和衰减时间(τd)分别为0.12 s和0.13 s. 这些结果共同证明了基于GaN/(BA)2PbI4异质结的自供电紫外光电二极管拥有旷阔的发展前景, 为智能光电系统的发展提供了新的思路.

     

    As an important part of an intelligent photoelectric system, ultraviolet detector has been widely used in many fields in recent years. The research on self-powered heterojunction photodiode is particularly important. In this work, a dual-mode self-powered GaN/(BA)2PbI4 heterojunction ultraviolet photodiode is prepared and discussed. The GaN film is deposited on sapphire by metal-organic chemical vapor deposition, and then the (BA)2PbI4 film is spin-coated onto the surface of the GaN film to construct a planar heterojunction detector. The X-ray diffraction, energy-dispersive X-ray spectroscopy mapping and scanning electron microscope measurements are used to determine the quality of GaN and (BA)2PbI4 thin films. When the film is illuminated by 365 nm light with a power density of 421 μW/cm2 at 5 V bias, the responsiveness (R) and external quantum efficiency (EQE) are 60 mA/W and 20%, respectively. In self-powered mode, the rise time (τr) and decay time (τd) are 0.12 s and 0.13 s, respectively, illustrating the fast photogeneration process and recombination process for photo-excited electron-hole pairs. And, the R is 1.96×10–4 mA/W, owing to the development of space charge region across the interface of GaN thin film and (BA)2PbI4 thin film. The outcomes of this study unequivocally demonstrate the extensive potential and wide-ranging applicability of self-powered UV photodiodes based on the GaN/(BA)2PbI4 heterojunction configuration. Moreover, this research presents a new concept that provides a novel avenue to the ongoing development of intelligent optoelectronic systems.

     

    目录

    /

    返回文章
    返回