搜索

x
中国物理学会期刊

基于T形四周期谐振慢波结构的X波段高功率微波产生技术的理论与仿真

CSTR: 32037.14.aps.73.20231921

Analysis and simulation of X-band high-power microwave generation based on T-shaped four-period slow-wave structure

CSTR: 32037.14.aps.73.20231921
PDF
HTML
导出引用
  • 优化设计了T形四周期谐振慢波结构, 并进行了高频理论分析. 利用镜像法将T形波导单元进行脊波导化等效设计, 并通过等效电路分析了等效脊波导的高频特性, 由此进行T形波导的谐振频率与结构解析理论分析. 在此基础上构造了T形四周期谐振慢波结构, 对该结构进行色散特性分析, 确定谐振模式和频率, 得到了模式同步电压范围. 最后基于提出的T形周期谐振慢波结构进行对应的相对论扩展互作用辐射源的仿真验证. 通过三维粒子仿真模拟分析及优化设计, 在448 kV注电压、400 A注电流和0.4 T的均匀轴向磁场条件下, 得到了频率为9.8 GHz、平均输出功率71.4 MW的高功率微波, 对应电子效率为39.8%. 本文提出的以T形波导为单元的新型谐振慢波结构有效地利用较少周期实现高效率、高功率微波产生, 为高功率微波科学提供了有效的高频结构的紧凑化方案.

     

    In this study, a T-shaped, four-period resonant slow-wave structure is optimally designed, and its high-frequency performance is comprehensively analyzed in theory. By using the image theory, the T-shaped waveguide unit is transformed into an equivalent ridge waveguide configuration. The high-frequency characteristics of the equivalent ridge waveguide, such as resonant frequency and structure of the T-shaped waveguide are analyzed by using equivalent circuit theory. The analysis has confirmed that in the ridge waveguide, starting from the second-highest order mode, the frequency points of the even-order modes are very consistent with those of the T-shaped waveguide; however, the odd-order modes have no such corresponding mode in the T-shaped waveguide, for they do not fulfill the electric boundary conditions required by the image method. On this basis, a T-shaped four-period resonant slow-wave structure is constructed, and its dispersion characteristics are analyzed to determine the resonant modes and frequencies, as well as the range of mode synchronization voltages. Simulations are subsequently performed to validate the effectiveness of the relativistic extended interaction radiation source, which includes the novel T-shaped periodic resonant slow-wave structure. Advanced three-dimensional particle simulations, in conjunction with optimization techniques show that a high-power microwave output at a frequency of 9.8 GHz, is achieved, which can delivers an average power of 71.4 MW. This output is attained under the conditions of a 448 kV beam voltage, 400 A beam current, and a 0.4 T uniform axial magnetic field, with an electron efficiency reaching 39.8%. This structure, characterized by the T-shaped waveguide, is demonstrated to be capable of producing high-efficiency, high-power microwaves with fewer periods, presenting a compact and efficient solution for generating high-power microwaves in advanced scientific applications.

     

    目录

    /

    返回文章
    返回