搜索

x
中国物理学会期刊

基于单向测量超声背散射系数的晶粒尺寸评价高效方法

CSTR: 32037.14.aps.73.20231959

Efficient grain size evaluation based on single direction measurement of ultrasonic backscattering coefficient

CSTR: 32037.14.aps.73.20231959
PDF
HTML
导出引用
  • 镍基高温合金GH4742具有优异的机械性能, 而晶粒尺寸是影响其性能的关键因素. 基于物理模型的超声背散射法可以实现晶粒尺寸高效和准确的评价, 但受限于复杂模型或多角度声束测量. 因此, 本文提出了一种只需单向测量的背散射系数法, 且无需考虑测量系统等无关因素的影响. 基于独立散射模型, 推导了只与材料相关的背散射系数; 利用空间相关函数描述了晶粒尺寸与背散射系数的关系; 采用参考信号剔除干扰因素的影响, 实现实验背散射系数的快速提取. 制备三组不同晶粒尺寸的GH4742试块进行相控阵超声实验和平均晶粒尺寸评价, 并与金相法结果进行对比. 结果表明本文方法得到的晶粒度与金相法结果最大相对误差为–22.7%, 最小相对误差为–3.7%.

     

    GH4742 nickel-based superalloy exhibits excellent mechanical properties, and grain size is a key factor affecting its performance. A physical model-based ultrasonic backscattering method makes grain size measurement accurate and efficient. Nevertheless, it is constrained by complex models or multiple measurements taken from various beam angles. As a result, a backscattering coefficient method that requires only a single measurement for grain size evaluation is proposed. In contrast to the existing methods, the proposed method solely focuses on the backscattering coefficient component of the backscattering signal. It effectively eliminates the influence of unrelated factors, such as the measurement system and the acoustic field, through the utilization of reference signals.
    The independent scattering model is employed to derive the backscattering coefficient, which solely pertains to the material itself. The relationship between grain size and backscattering coefficient is described by using a spatial correlation function. To consider the irrelevant factors, an experimental measurement method is developed by using the reference signals. Through numerical calculation and analysis, it has been observed that the backscattering coefficient is closely related to the frequency. When the product of the wavenumber and the grain size is significantly greater than 1 ( ka\gg 1 ), a Stochastic scattering limit is reached. Conversely, when ka\ll 1 , a Rayleigh scattering limit is observed. Furthermore, the backscattering coefficient is directly proportional to the grain size. As a general trend, larger grain sizes result in higher backscattering coefficient.
    Three sets of GH4742 specimens with different grain sizes are prepared for phased array ultrasound experiments. It can be observed that the experimental backscattering coefficients, root mean square (RMS) values, and the amplitude trend of time domain signal are consistent. To perform grain size inversion, the backscattering coefficients in the effective bandwidth range of the probe are selected. By utilizing the least-square method, the theoretical backscattering coefficient is employed to fit the curves of the experimental backscattering coefficients. The evaluation results are compared with those obtained by metallographic analysis. The results show that the grain sizes obtained by the proposed method have a maximum relative error of –22.7% and a minimum relative error of –3.7%.

     

    目录

    /

    返回文章
    返回