搜索

x
中国物理学会期刊

有机阳离子插层调控二维反铁磁MPX3磁性能

CSTR: 32037.14.aps.73.20232010

Tuning magnetic properties of two-dimensional antiferromagnetic MPX3 by organic cations intercalation

CSTR: 32037.14.aps.73.20232010
PDF
HTML
导出引用
  • 电控磁效应调控二维 (2D) 反铁磁 (AFM) 材料的研究结合了电控磁效应与半导体工艺兼容且低能耗的优势, 2D材料范德瓦耳斯界面便于异质集成以及AFM材料无杂散场、抗外磁场干扰、内禀频率高的优势, 成为领域内研究的重点. 载流子浓度调控是电控磁效应的主要机制, 已被证明是调控材料磁性能的有效途径. 层内AFM材料的净磁矩为零, 磁性调控测量存在挑战, 故其电控磁效应研究尚少且潜在的机制尚不清楚. 基于有机阳离子的多样性, 本文利用有机阳离子插层系统地调控了2D 层内AFM材料MPX3 (M = Mn, Fe, Ni; X = S, Se) 的载流子浓度, 并研究了电子掺杂对其磁性能的影响. 笔者在MPX3家族材料中发现了依赖载流子浓度变化的AFM-亚铁磁 (FIM)/铁磁 (FM) 的转变, 并结合理论计算揭示了其调控机制. 本研究为2D磁性材料的载流子调控磁相变提供了新的见解, 并为研究2D磁体的电子结构与磁性之间的强相关性以及设计新型自旋电子器件开辟了一条途径.

     

    Electrical control of magnetism of two-dimensional (2D) antiferromagnetic (AFM) materials combines the advantages of controlling magnetism by purely electrical means, compatibility with semiconductor process, low energy consumption, heterogeneous integration of 2D materials with van der Waals (vdW) interface, and AFM materials with no stray field, resistance to external magnetic field interference, and high intrinsic frequency, and thus becomes a research focus in the field. The carrier concentration control is the main mechanism of electrical control of magnetism, and has been proved to be an effective way to control the magnetic properties of materials. The intralayer-antiferromagnetic materials have net-zero magnetic moments, and it is a challenging task to measure their regulated magnetic properties. Therefore, there is limited research on the electrical control of magnetism of intralayer-antiferromagnetic materials, and their potential mechanisms are not yet clear. Based on the diversity of organic cations, the present work systematically modulates the carrier concentrations of 2D intralayer-antiferromagnetic materials MPX3 (M = Mn, Fe, Ni; X = S, Se) by utilizing organic cations intercalation, and investigates the influence of electron doping on their magnetic properties. Phase transitions between AFM-ferrimagnetic (FIM)/ferromagnetic (FM) depending on carrier concentration changes are observed in MPX3 materials, and the corresponding regulation mechanism is revealed through theoretical calculations. This research provides new insights into the carrier-controlled magnetic phase transition of 2D magnetic materials, and opens up a pathway for studying the correlation between the electronic structure and magnetic properties of 2D magnets, and designing novel spintronic devices as well.

     

    目录

    /

    返回文章
    返回